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Abstract— AdTorrent is an integrated system for search, rank-
ing and content delivery in car networks. AdTorrent builds on the
notion of Digital Billboards, a scalable “push” model architecture
for ad content delivery. We present a detailed analysis of the
performance impact of key design parameters such as scope of
the query flooding on the query hit ratio. Our mobility model
for the urban, vehicular scenario can be used in conjunction
with the analytical model for estimating query hit ratio by a
system designer to determine the scope of the query flooding as a
function of the available storage per vehicle for their application.

I. I NTRODUCTION

One of the most important sources of revenue for big
Internet-based companies are advertisements. With vehicular
networks poised to become part of the Internet, this new
“edge” of the Internet represents the next frontier that ad-
vertising companies will be striving to reach. As advertisers
struggle to reach increasingly distracted and jaded American
consumers, they have sought nontraditional media for their
advertisements (Ads), from elevators to cell phone screens.

Content-targeted advertising paradigm has proved to be a
resounding success in advertising on the conventional Internet.
As the Internet expands to mobile devices, even vehicular
nodes are becoming a part of the “edge” of the Internet. Sev-
eral interesting challenges in application design arise, while
designing a targeted ad delivery mechanism for cars.

Consider this scenario: you are driving on Interstate-5 from
Los Angeles to San Francisco to visit relatives. On the way,
you realize that you need to buy some gift for them. You
initiate a search for “new DVD releases”. The Ad software
is not only keyword aware but alsolocation aware. Hence
the search results return not only the content or latest DVD
releases but also the latest deals on those DVD releases in
stores.

Imagine another similar scenario: you are traveling to Las
Vegas and are 50 miles from the city. You want to search for
all hotels in the vicinity that cost less than200 dollars per
night, preferably with virtual tours of the hotels.

AdTorrent seeks to provide to the user, relevant Ads guided
by a particular keyword search. Ads potentially can be multi-
media clips, for example, virtual tours of hotel rooms, trailers
of movies in nearby theatres or a conventional television ad.

A. Our Contributions

Vehicular Ad Hoc Networks (VANETs) present interesting
challenges to protocol design. One of the key differentiating
characteristics is the time-varying nature of vehicle densities
and the mobility model. Mobility has an important impact on
application design.

The contributions of this paper are as follows: (1) firstly, we
propose a novel push-model based location-aware ad service
architecture, designed for vehicular environments (2) secondly,
we present a group mobility model for urban vehicular traffic,
(3) thirdly, we present a peer-peer protocol that enables effi-
cient keyword-set based search and quickly delivers top ranked
content to the end user using swarming, (4) finally, we present
a model for hop limit selection of search query flooding in the
AdTorrent network. Our results on the optimal hit rate and
the cache probability distribution that maximizes the overall
hit rate as a function of the hop limit of query flooding is
applicable in any hop-limited query flooding application. Our
analysis of hit rates for LRU-based cache management extends
previous work in the area by including the effect of swarming
on the steady-state cache probabilities.

B. Organization of the Paper

The rest of the paper is organized as follows. Section II
describes the Vehicular communication architecture. Section
III gives an overview of the operation of the ad service in a
vehicular scenario. Section IV describes the novel mobility
model we used for the purpose of evaluation and details
our evaluation of the performance of our protocol using
simulation. Section V gives a brief overview of AdTorrent,
a push-model of content dissemination based on a popular
swarming protocol. Section VI describes the model for hop
limit selection where we derive the maximum hit rate achiev-
able for a specific hop limit as a function of the cache size
and describe our model for computing hit rates in a swarming-
based content delivery scenario when the underlying cache
management is based on LRU. We outline the related work
in section VII. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

In this section we describe the vehicular environment and
the assumptions about the environment we used to design our



protocol.
The network consists of a set ofN nodes with same

computation and transmission capabilities, communicating
through bidirectional wireless links between each other, this
is the infrastructure-less ad-hoc mode of operation. There are
wireless gateways at regular intervals providing access to the
rest of the Internet using infrastructure support (either wired
or multi-hop wireless). We assume a CSMA/CA MAC layer
protocol (IEEE 802.11a) that provides RTS/CTS-Data/ACK
handshake sequence for each transmission.

Our vehicular wireless architecture is composed of two
kinds of communications, namely, vehicle-vehicle and vehicle-
gateway. Dedicated Short-Range Communication (DSRC) [4]
is a short to medium range communication technology oper-
ating in the 5.9 GHz range can be used for vehicle-vehicle
communication. For a more detailed description of the DSRC
characteristics, we refer the reader to [8].

• Data is not strictly real-time:There are no real-time
constraints on the data, thus in some sense, the data is
delay-tolerant.

• Data is meta-tagged:Meta-data can be the file-name,
the format and/or key-words extracted from the data. For
some types of data, such as text documents, metadata can
be extracted manually or algorithmically. Some types of
files have metadata built-in; for example, ID3 tags on
MP3 music files.

• Communication between vehicles is over a low data
rate connection:This constraint depends on the radio
technology used. Currently, 802.11x devices will offer
goodputof the order of a few hundred Kbps.

• Push model:Data is being continually “pushed” by the
access points to the nodes in the transmission range.

• Multi-hop delivery: It is infeasible to transmit data to
more than a few hops.

III. T HE DIGITAL BILLBOARD ARCHITECTURE

The digital billboard architecture serves to deliver Ads to
the vehicles that pass within the range of the Access Points
(APs). This architecture is:

• Safer:Physical billboards can be distracting for drivers
• Aesthetic:The skyline is not marred by unsightly boards.
• Efficient: With the presence of a good application on the

client (vehicle) side, users will see the Ad only if they
actively search for it or are interested in it.

• Localized:The physical wireless medium automatically
induces locality characteristics into the advertisements.

Every Access Point (AP) disseminates certain sets of Ads
that are relevant to the proximity of the AP deployment. This
is reasonable since it is the extension of the physical billboards
that we very often see lined on the streets and freeways that
advertise the best offers available at the next restaurant. Our
AP acts as a “digital billboard”. This model makes sense
economically as well since business owners in the vicinity
subscribe to this digital billboard service for a fee. The APs
continually disseminate these advertisements to the vehicles

that traverse the coverage area. The dissemination rate can be
determined by differentlevels of servicedemanded and paid
for by the billboard owner.

Leveraging this architecture, we want to design a location-
aware distributed mechanism to search, rank and deliver
content to the end-user (the vehicle). We focus not only on
simple text-based Ads but also on larger multimedia Ads,
for example, trailers of movies playing at the nearby theater,
virtual tours of hotels in a 5 mile radius, or conventional
television advertisements relevant to local businesses.

Every node that runs the application collects these advertise-
ments and indexes the data based on certain meta-data which
could be keywords, location and other information associated
with the data. We assume that Ads are uniquely identifiable
using a document identifier (DocId).

In the next section we describe a group mobility model for
an urban vehicular network. The model guides us in the design
of AdTorrent, a protocol for advertisement search and delivery
on the vehicular network.

IV. M OBILITY MODEL

The mobility model is designed to describe the movement
pattern of mobile users, and how their location and velocity
change over time. Mobility patterns play a significant role in
determining the protocol performance and thus are an impor-
tant parameter to the protocol design phase. It is important for
mobility models to emulate the movement pattern of targeted
real life applications in a reasonable way. Otherwise, the
observations made and the conclusions drawn from the simu-
lation studies may be misleading. Thus, when evaluating our
vehicular ad hoc network protocol, it is imperative to choose
the proper underlying mobility model. Different application
scenarios lend themselves to different mobility models. For
example, a campus-wide wireless network deployment will
see different mobility patterns (less constrained, more random)
than an urban vehicular grid scenario (low entropy of vehicles,
group mobility).

In modeling and analyzing the mobility models in a VANET,
we are more interested in the movement of individual nodes
at the microscopic-level, including node location and velocity
relative to other nodes, because these factors directly determine
when the links are formed and broken, since the communica-
tion pattern is peer-to-peer.

We used the US Census bureau data for street level maps. As
a starting point, using the methodology from [11], we generate
the mercator projection of the data, in our case the local map
of an area around UCLA in Fig. 1.

However, in [11], the actual mobility model is quite similar
to the Random Waypoint model in the sense that the vehicle’s
arrival and direction and speed are similar to the Random
Waypoint model. This results in the vehicular mobility model
being very similar to the Random Waypoint model. In reality,
a complex mobility behavior is observed. Some nodes move in
groups; while others move individually and independently; a
fraction of nodes are static. Moreover, the group affiliation
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Fig. 1. Local Map of Westwood, an area around UCLA

is not permanent. The mobile groups can dynamically re-
configure themselves triggering group split and mergence. All
these different mobility behaviors coexist in vehicle or urban
scenarios. We refer to the non-uniform, dynamic changing
scenario described above as “heterogeneous” group mobility
scenario [15]. A good realistic mobility model must capture all
these mobility dynamics in order to yield realistic performance
evaluation results, which, unfortunately, is not satisfactorily
captured in any of the existing models.

We propose a “real track” based group mobility model (RT
model) that closely approximates the above “heterogeneous”
mobility patterns happening in the scenarios of vehicle ad hoc
networks. It models various types of node mobility such as
group moving nodes, individually moving nodes as well as
static nodes. Moreover, the RT model not only models the
group mobility, it also models the dynamics of group mobility
such as group merge and split.

The key idea of our proposed model is to use some “real
tracks” to model the dynamics of group mobility. In our
simulation scenarios, these “real tracks” are derived from
the streets from actual maps. The grouped nodes must move
following the constraint of the tracks. At the switch stations,
which are the intersections of tracks/streets, a group can then
be split into multiple smaller groups; some groups may be
even merged into a bigger group. Such group dynamics happen
randomly under the control of configured split and merge
probabilities.

Nodes in the same group move along the same track. They
also share the same group movement towards the next switch
station. In addition, each group member will also have an
internal random mobility within the scope of a group. The
mobility speeds of these groups are randomly selected between
the configured minimum and maximum mobility speeds. One
can also define multiple classes of mobile nodes, such as
pedestrians, and cars, etc. Each class of nodes has different
requirements: such as moving speed etc. In such cases, only
nodes belonging to the same class can merge into a group.

Groups split and merge happen at the switch stations.
Each group is defined with a group stability threshold value.
When at the switch stations, each node in the group will
check whether its stability value is beyond its group stability
threshold value. If it is true, this node will choose a different
track from its group. A group split happens. When several
groups arrive at the same station and select the same track for
the next movement, naturally, they will be merged into one
bigger group.

The proposed RT model is also capable of modeling
randomly and individually moving nodes as well as static
nodes(such as sensors). Such non-grouped nodes are not
restricted by the switch stations and real tracks. Instead, their
movements are modeled as random moves in the whole field.

Fig. 2. Overview of Real Track Based Group Mobility Model.

Fig. 2 illustrates a main idea of the proposed real track based
group mobility model. In this example, group moving nodes
are moving towards switch stations along the tracks. They split
and merge at switch stations as shown in the figure. The black
nodes in Fig. 2 represent the individually moving nodes and
static nodes. They are placed and move independent of tracks
and switch stations.

We evaluate the scenarios along the following metrics as
defined in [11]. For brevity we present only the average
connectivity duration metric, which is the most essential for
protocol design in our scenario.

Average connectivity duration: This is the duration of the
time two nodes have a path between them. We further quantify
this metric based on the maximum allowable hops for any
path between the two nodes. This metric is relevant to our
application as it justifies the usage of a swarming content
delivery model in the presence of limited connectivity between
the nodes.

We used a 500m transmission range for the radios. In our
case we adjusted the number of nodes, to 30, 50 and 60, spread
over an area of2400m×2400m. The average number of nodes
in the transmission range were 4.1, 6.9 and 8.1 respectively.
Each run of simulation were 900s long. Also we evaluate the
scenarios at regular intervals of 10s.

We observe from Fig. 3 that for a 4-hop limit path the
connectivity duration has an almost100% increase as opposed



to a 3-hop limited path. Longer connectivity durations lead
to robust protocol performance (since the initiated downloads
have a higher chance of being completed). For urban vehicular
scenarios, the results in Fig. 3 suggest that the incremental
gain from increasing the hop limit up to 4 might be useful for
increasing the robustness of protocol performance.
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Fig. 3. Average Connectivity duration

V. A DTORRENT: DESIGN

We outline the primary design goals ofAdTorrent as fol-
lows:

1) location aware torrent1 ranking algorithm;
2) search should be simple and robust, in presence of node

failures and departures;
3) leverage churn
4) minimal overhead of communication;

There are three main tasks performed by our application.
Namely, search for relevant ad-content,query dissemination
and content delivery. We address each of these functions in
the following sections.

A. Search

Search involves associating keywords with document iden-
tifiers and later retrieving document identifiers that match
combinations of keywords. Each file is associated with a set
of metadata: the file name, its format, genre (e.g. in adver-
tisements). For some types of data, such as text documents,
metadata can be extracted manually or algorithmically. Some
types of file have metadata built-in; for example, ID tags on
MP3 files.

Distributed Hash Tables (DHTs) have been proposed for dis-
tributed lookups. We do not use a DHT for distributed lookup,
since it is well-known that DHTs are not very stable under
high churn [10]. Our query dissemination mechanism aims to
achieve robustness rather than communication efficiency.

However, we introduce certain optimizations to the index
information dissemination that will reduce the amount of
search query communication overhead.

1we use the terms : document and torrent interchangeably

Indexing: Vertical partitioning divides an index across
keywords. Horizontal partitioning divides an index across
documents, so all the nodes have an entry foreachkeyword.
Vertical partitioning minimizes the cost of searches. However,
horizontal partitioned index reduces the cost of update of
document. In our scenario, the number of queries will far
outnumber the number of updates, since we assume the
documents typically searched for, are not changing frequently.
Our index is partitioned based on set of keywords. This was
first introduced in KSS [5]. The motivation of using a keyword
set based indexing is the reduction of overhead in terms of
query data information. The downside of this approach is
higher cost of insert and storage. In VANETs, we believe,
storage will not be a limitation. In the AdTorrent application,
one of the key characteristics will be the infrequent updates
of ads, maybe once in one day or less.

The index we maintain is distributed. However, every node
tries to maintain information of the all the two-hop neigh-
borhood of itself. The documents are indexed on keys. Keys
consists of SHA-1 hashes of the keywords sets. Along with
the keys and the URL of the data, we also store additional
meta-data associated with the data. The metadata is stored in
an index corresponding to each subset of at most K metadata
items. KSS uses a distributed inverted index to answer queries
efficiently with minimal communication overhead. Each entry
of the index contains: (1) the hash of the searchable sets of
keywords as the index key, (2) a pointer to the data such as
the URL of the data and, (3) meta-data associated with the
data.

Placement: In a wireless scenario, it makes sense to co-
locate the index and the data corresponding to the index entry.
This is to reduce the overhead of data discovery latency once
the index for that data has been located.

B. Query Data Dissemination Optimization

Each node disseminates the content availability information
in the form of a bloom filter. Bloom filter [1] is an efficient
method to test for set membership. In our case, the bloom filter
is constructed to test the keyword membership for a particular
node. A bloom filter is computed by each node based on the
keywords related to the data, the node has stored. Since the
data downloaded is only once every AP encounter or if the
node explicitly downloads some swarming torrent, hence the
updates of bloom filter and dissemination is not very frequent.

We now enumerate the basic steps of the algorithm.
The indexing scheme described above does not have a docu-

ment ranking algorithm. The order of query results propagation
and display is equally important for successful and timely
dissemination in a VANET. This assumes further importance
in VANET since the mobility of nodes might render some
query results obsolete or irrelevant in short period of time. We
incorporate a location metric in the document ranking scheme.
One way to support the document ranking would be to score
a document based on the following categories.

1) location
2) max # of pieces



Algorithm 1 AdTorrent: Query Processing, Ranking and
Content Delivery

userinput = search(“A B C”)

num local entries =lookup local index(hash(AB), hash(BC),
hash(CA))
if (num local entries> k1)

goto LookupDone
else

/* Found < k1 local entries */
/* not in the 2-hop neighborhood */
num remoteentries =scopedflood( hash(XY), m )
/* ∀ XY ∈ AB,BC,CA */
After T1 seconds, if NO response, return NO
If k1 entries are found then

LookupDone:
/* now havek1 entries (local or remote in 1-4 hops) */
sendudp ctrl ( Hash(XY))→METADATA( e.g. Torren-

tID)

/* Collect metadata afterT2 */
torrent ranking (metadata, params)

Step Final:
swarm(TorrentID)
/* returns a list of Peers & HopCounts*/
/* ( this may be beyond the the scope of the search) */
decentralized tracker()
/* By allowing the list of Peers beyond the k-hop scope

of the search, we add some randomization */

3) stability of neighbors
4) relevance of the DocID to the Meta-Data queried

C. Content Delivery

Once an accurate document ranking has been performed,
the actual delivery of content can be done by swarming. One
of the factors that determined the ranking of a document in the
query results was the number of sub-pieces of the document
that were available and the location of the pieces. Thus the
torrent ranking guides the system to choose documents which
are more amenable to swarming downloads. The vehicle now
joins the existing BitTorrent-like stream to start getting pieces
of the document from neighboring nodes. We propose to do
this using our earlier work in [8]. Swarming allows us to be
robust to node failures (cars going out of range or powering
down) and efficient in terms of delivery (the cars form a
sort of end-system-multicast tree). However, the success of
swarming especially in wireless ad-hoc networks depends
hugely upon cooperation among vehicles at both the routing
layer (forwarding packets for others) and at the application
layer (sharing the advertisements that have been downloaded).
In the next section we address the concerns with respect to
selfish behavior on the AdTorrent network and discuss ways

to mitigate it.

VI. M ODEL

As discussed in the previous section, AdTorrent searches for
relevant ad-content using a hop-limited query broadcast. Since
setting a large hop-limit queries more nodes, a larger hop-limit
improves the probability of finding the desired content and will
likely increase the number of sources from which the content
may be downloaded from. However, the gains in the quality of
search results comes at the cost of significant increase in the
messages sent per query in the network. Since only limited
bandwidth is available in wireless medium, careful analysis
of this trade-off between the quality of search results and the
communication costs of the search is required. We develop a
simplified model of our system to explore this trade-off in this
section.

Notice that if sufficient storage space is available at each
node, over time as nodes make requests and download content,
nearly all content will become available within a few hops.
Limited storage space necessitates deletion of previously ob-
tained content preventing accumulation of a sufficiently large
corpus of the offered content. Thus, the size of the per-node
local storage space is a key factor in determining the hop-limit
required to achieve an overall targethit rate (the probability
of finding the desired content).

Even when the storage space is limited, if it was possible to
have a replica of all the content within a few hops from each
node we could still achieve a very overall hit rate with a short
hop-limit. We formalize these ideas by deriving the allocation
of a given per-node storage space that maximizes the overall
hit rate for a given hop limit.

While it may be possible to devise distributed mechanisms
to achieve the derived optimal allocation, we note that a very
high query hit rate by itself does not imply a superlative
system performance. For instance, it is conceivable that after
accessing a particular content, a user may wish to access a
content again in near future (e.g. to compare a hotel room to a
previously viewed hotel room). Typically such request patterns
imply access-based cache replacement schemes such as LRU
(delete theLeastRecentlyUsed file). Since, LRU is the most
commonly implemented cache replacement policy, we analyze
the hit rates achieved under LRU cache replacements.

The AdTorrent protocol allows a node to download from
multiple sources in parallel. This parallel downloading affects
access-based cache management policies like LRU as one
content request by a node now has the potential of affecting
the LRU ranking of the requested content at many nodes (up to
the maximum number of parallel download sessions allowed in
the protocol). Therefore, our analysis must evaluate the effect
of downloading from multiple sources on the overall hit rates.

We assume that there areN unique files in the system (the
term file represents anyad that would be downloaded), each
with an associated request rateλi for file i per node (the



request rates areuniformacross nodes2). We assume that each
file is of equal size3. Nodes have finite local storage space
to store content files. We assume that the storage space at
each node is equal4 and has the capacity to storeB files.
Throughout our analysis in this section, we assume that a
query is for a particular file5. We assume that a query flood
of hop limit k reachesM(k) peers.

We use the following notation for the system parameters in
our model:

• k = Number of hops in the search query dissemination
• M = Number of nodes in the search range
• N = Number of unique files in the system
• B = Per-node storage size in number of files
• i = File Id
• λi = Request rate of filei per node
• λ =

∑N
i=1 λi

• S = Swarming parameter (the maximum number of peers
a peer can download from in parallel)

• j = Location in the local cache

Content list aggregation: Note that the aggregation of the
content list of neighboring peers is not explicitly included in
our model as the relevant hit rates can be trivially obtained
from our model that assumes no aggregation. The aggregation
of the content list of 1-hop neighbors implies that, with a
flood of hop-limit k, we obtain the information about nodes
within the hop distancek + 1. In other words, if we find a
hop-limit of k +1 to provide acceptable hit rates in the model
described herein, AdTorrent will have the same performance
with a hop-limit of k. We would like to add that while
content list aggregation is a good way to improve the search
performance, we believe that aggregating content lists beyond
1-hop neighbors is unwise. In a mobile wireless scenario,
neighbors can change frequently and, while updating for the
content list of 1-hop neighbors in case of a change is easy,
keeping the content list accurate for neighbors more than 1-
hop away will require costly change propagation.

For a VANET scenario, our real-track mobility model [15]
is an ideal choice. The model can be run with the expected
user density and an empirical expression ofM(k) can be
obtained from the collected statistics. In our investigations,
we use two different scenarios: andense urban scenarioand
a sparserhighway scenario. In the dense urban scenario, the

2We note that the search is localized over a small geographic area so
node interests are not necessarily very different. We believe that the uniform
request rates assumption provides an adequate average case analysis (i.e. a
more accurate model allowing for variations in request rates of files across
nodes where the average per-node request rate isλi would not give results
that are qualitatively any different).

3While file sizes can be different, cache replacement is implemented for
fixed size data blocks. Thus, any inaccuracy in the analytical model is on
account of correlated requests for the disk blocks and not the equal file
size assumption. We do not believe correlated requests make a qualitative
difference in the results of the model.

4The storage capacity in question is the capacity allocated for the push-
model data storage and we expect that very few users will allocate more
storage than the minimum required by the AdTorrent application.

5Even though a query has a set of keywords, a typical user is looking for
a particular item when they make the query.

TABLE I

GROWTH RATE IN DENSE -URBAN AND SPARSE-HIGHWAY MODELS

Hop Limit 1 2 3 4 5 6 7
M(k) ≈ 4k1.4 4 11 19 28 38 49 61
M(k) ≈ 4k2 4 16 36 64 100 144 196

growth model is grid-like and we obtainM(k) = αk2 with
α = 4 (our mobility model simulations for the 30 nodes in
2400m x 2400m area case in Section IV gaveα = 4). For
the sparse highway scenario, we obtainedM(k) = αk1.4 with
α = 4. In Table 1, we show the growth in number of nodes
queried (which is directly proportional to the communication
cost).

In most web and multimedia applications, different ob-
jects have been found to have very different popularity and
we expect the same in our Ad-content distribution scenario.
Skewed file popularity distribution is typically modeled by
a Zipf-distribution and we will use the same model in our
investigations.

A. Hit Rate Optimization

When the query flood has a hop-limit ofk, the hit rate for
file i, Hi(k), is

Hi = 1− (1− pi)M(k)

The overall hit rateH can be written as

H =
N∑

i=1

λi

λ
Hi =

N∑

i=1

λi

λ
[1− (1− pi)M(k)]

H = 1−
N∑

i=1

λi

λ
(1− pi)M(k)

As the hit rates can always be increased if more stor-
age space was available, our optimization is under the the
constraint of the available storage space. Since each peer
is identical in our model, the file replicas of a file will be
uniformly distributed in the network and, for our purposes, it
is sufficient to model the probabilities of each file being in
the cache. Therefore, for our optimization, we can write the
following constraint

N∑

i=1

pi = B

The Lagrangian for our problem is

G = 1−
N∑

i=1

λi

λ
(1− pi)M(k) + γ

( N∑

i=1

pi −B
)

whereH is given in the equation above. Optimizing the hit
rate w.r.tpi gives the optimalpi to be

pi = 1− (N −B)λ
− 1

M(k)−1
i∑N

i=1 λ
− 1

M(k)−1
i

∀ i



Therefore, the optimal value ofH, Hopt, is

Hopt = 1− (1− B

N
)M(k)N

( 1
N

N∑

i=1

λi

λ

− 1
M(k)−1 )−[M(k)−1]

We plot the optimal hit rates for different cache sizes
for Zipf-distributed file request rates andM(k) = 4k2 in
Fig. 4. These results indicate that increasing the hop limit
shows diminishing returns and, hence, the system designer
should select a hop limit that is no more than the minimum
desired to achieve the target hit rate. To understand if these
optimal hit rates can be achieved, we plotted the optimal cache
probabilities for one case,N = 400, B = 20, in Fig. 5.
As we can see, as the hop-limit increases, the optimal cache
probabilities begin to become more uniform (since enough
nodes are being queried at high hop distances, it is sufficient
to have cache probability below 0.1 for even the most popular
file to have a very high probability of finding the file).
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While this optimization provides us with the best case hit
rate performance, as we mentioned earlier, the number of
replicas of each file are driven mainly by the file request

patterns so it may not be possible to achieve the required
cache probabilities needed for the optimal hit rates. Even more
importantly, we must bear in mind that finding one source
for the searched file (as measured by the hit rate) is not the
end-goal. A near-uniform distribution of cache probabilities
(as suggested by, say, a hop-limit of 6 in Fig. 5) implies that
the sources that have the most popular file will have to serve
far more requests than sources that have files that are, say,
10 times less popular as there are almost an equal number
of sources of the two files. Such asymmetric distribution of
download load is likely to result in queueing delays for the
downloads for popular files. As shown in [13], optimizing
download time performance requires a linearly proportional
replica distribution. Further, in mobile wireless networks,
downloading from a single source is unwise as the source peer
can go out of range in a short time. Hit rate emphasizes finding
one source of a file and gives no weight to finding multiple
sources of a file and our design should not be solely guided
by the hit rate performance. As [14] discusses, LRU gives a
file replica distribution that is close-to-linearly proportional but
populates fewer-than-linearly-proportional replicas of popular
files. Thus, while LRU may be sub-optimal for download time
performance, it is better than a linearly proportional replica
distribution for hit rate. Since, LRU is also a popular cache
management policy for many other reasons, we evaluate the
hit rate performance with LRU next.

B. LRU Model

To determine the probability of finding the desired content
in the selected hop limit, we need to find the probability
of finding the file at any one node (since the request rates
are uniform across nodes, the probability of finding a file
is the same across the network ). Since each node is same
in all respects, an analytical model of the network of LRU-
managed caches can be constructed with a single cache that, in
addition to serving the local requests, also serves requests from
remote nodes. We model this cache from the perspective of a
particular file, say, filei - all requests for filei move the file
to the top-most position in the storage; a request for any other
files moves filei down to one lower position. Reference [3]
presents an analytical framework for estimating the hit rate
in stand-alone LRU-managed cache. By including the effect
of remote requests, their model can be extended to model a
network of LRU caches [7].

A critical component of this framework isr(i, j, k), the rate
at which file i is pushed down from positionj to position
j + 1 when the hop limit for scoped flooding isk hops.
Let plocal(i, j, k) be the probability of finding filei in top
j positions in the cache when the hop limit isk hops. The
probability of finding file i in local cache given a hop limit
of k is thenplocal(i, B, k). plocal(i, j, k) can be expressed in
terms ofr(i, j, k) [3] by:

plocal(i, j, k) ≈ r(i, j, k)∑N
i=1 r(i, j, k)



At steady-state, the push-down rate for filei from positionj
to j+1, r(i, j, k), must equal the rate at which filei is brought
into topj positions of the LRU stack (otherwise the probability
of finding the file in these topj positions becomes unbounded).
This conservation of flow principle helps us computer(i, j, k).
File i is brought into topj positions under two conditions: (i)
a local request for filei when file i is not in topj positions:
the file may be brought to the top position from positions
j + 1 · · ·B of the local cache if it is available there or it may
be brought from a remote node (if a node within the search
range has the file), this isrlocal(i, j, k); (ii) a remote request
for file i: since the filei is not in topj positions, it must be
in the remainingj + 1 · · ·B positions in the local cache for it
to show up in topj positions on a remote request. Thus, we
can write the following equations:

rlocal(i, j, k) = λi[1− plocal(i, j, k)]
[1− (1− plocal(i, B − j|j, k)(1− premote(i, j, k)]

rremote(i, j, k) = λi[1− plocal(i, j, k)]
plocal(i, B − j|j, k)

where

plocal(i, B − j|j, k) =
plocal(i, B, k)− plocal(i, j, k)

1− plocal(i, j, k)

and

premote(i, j, k) = [1− (1− plocal(i, j, k))M(k)]

A node sends out a file request only when it does not have the
file. Thus, the rate at which the otherM(k)−1 nodes send a
file request for this file to the peer-to-peer network isλi[1−
plocal(i, B, k)], whereplocal(i, B, k) is the probability that the
file i is available at a node. The nodes that have filei in their
cache satisfy these requests for filei sent to the peer-to-peer
network. Assuming that the requests are uniformly distributed
over the nodes that have the file, the request rate for filei
served by a node that has filei on account of requests from
other nodes equals(M(k)−1)rremote(i,j,k)S

M(k)plocal(i,B,k) . Thus,

r(i, j, k) = rlocal(i, j, k)+
(M(k)− 1)rremote(i, j, k)S

M(k)plocal(i, B, k)

Starting withplocal(i, 1, 1) = λi we can iteratively solve the
above equations until the value ofplocal(i, B, k) converges.
The complexity isO(NB) and, in our computations, the value
of p converged in only a few iterations.

Given plocal(i, B, k), we can compute the hit rate for
file i in the k-hop neighborhood asP (i, B, k) = [1 −
(1 − plocal(i, B, k))M(k)] and the overall hit rate (across all
searches) as:

P (B, k) =
N∑

i=0

λi

λ
[1− (1− plocal(i, B, k))M(k)]

Among the inputs to our model, the cache sizeB and the
hop limit k are the design choices whileλi, the file request

rate distribution, andM(k), the number of nodes in thek-
hop neighborhood, are inputs that the system designer must
provide for the specific application scenario being investigated.

We show the LRU performance for the dense, urban sce-
nario and the sparse highway scenario in Figs. 6 and 7
respectively for Zipf-distributed file request rates. In Figures 6,
7, the cache ratio refers to the size of the individual node cache
with respect to the total number of files in the network. So
for example, a cache ratio of0.1 means, an individual nodes’
cache can store10% of the total files in the network.

We find that with increasing hop count, the marginal gain
in hit rates diminishes. This effect is even more pronounced
as the cache ratio increases. Our analytical framework can
be used to tune the query flood to achieve required levels
of hit rates, and consequently the performance of AdTorrent
by suitably adjusting the hop limit of the query flood. So,
for example, if 80% hit rate was a satisfactory level of
performance measure, our results suggest that a query hop
limit of 4 will yield satisfactory performance in the dense-
urban scenario irrespective of the cache size (as long it is
above a certain threshold). Recall that our mobility model
simulations in Section IV also suggested a hop limit of 4 to
obtain a reasonable average connectivity duration which would
facilitate robustness in protocol performance.
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Fig. 6. Hit Rate vs. Hop Count with LRU, for varying Cache sizes and
M(k) ∼ αk2

C. Effect of Spreading Factor

As already discussed, downloading from multiple sources in
mobile wireless networks is preferable. However, since parallel
downloading affects cache probabilities, we wish to check the
effect of increasing the spreading factor on the hit rates. In
Fig. 8, we show the hit rates for different spreading factors.
As we can see from the figure, the spreading factor has no
effect on the hit rate so our choice of the spreading factor is
not limited by hit rate considerations.

D. Hop Limit Selection

We can see from Figs. 6 and 7 that the cache size is
an important factor in determining the hit rate and, thus in
determining the appropriate hop limit. For example, if the
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cache size is only 1.25% of the total number of files, we need
information on about 60 nodes to achieve better than 75% hit
rate and, as our content list aggregation gives us information
on one extra hop, we need a hop limit of 6 in the sparse
highway scenario (notice that, in the denser and faster-growing
urban scenario, a hop limit of 3 would be sufficient to achieve
this hit rate). In contrast, if the cache size was 5% of the
total number of files, even with a hop limit of 2 in the sparse
highway scenario (i.e. with querying only 11 peers per query)
we get a hit rate of 80%.

E. Effect of Skew in File Request Rates

Skewed data access patterns improve the system perfor-
mance in caching applications. To determine the sensitivity of
hop limit selection on the skew in request rates, we computed
the hit rate for different request rate distributions using our
LRU model. The results are shown in Fig. 9. As expected,
decrease in skew does decrease the overall hit rate but, unless
the request rate has very little skew (e.g. has a zipf-parameter
of 0.5), it may not be necessary to increase the hop limit or
the cache size.
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VII. R ELATED WORK

This section summarizes previous work related to co-
operative data transfer protocols for the wired settings as well
as vehicular environments. BitTorrent is a popular [2] file-
sharing tool, accounting for a significant proportion of Internet
traffic. There are two other peer-peer bulk transfer protocols
namely, CarTorrent and Coopnet. CarTorrent [8] is a recent
work that extends the BitTorrent protocol to the vehicular
networks scenarios addressing issues such as intelligent peer
and piece selection given the intermittent connectivity and
limited bandwidth of the wireless medium.

Peer-to-peer networking in cooperative mobile environ-
ments has been proposed by several others. However, the
constraint of limited buffers at the peers is discussed by very
few others. [7] analyzed epidemic information dissemination
to support web accesses with limited buffers per peer. Our
analytical model to study the trade-off between the query
hop limit and the overall hit rate is very similar to theirs.
Since our problem setting is different from theirs, some of our
assumptions are different. As discussed earlier, our model (as
well as that of [7]) is an extension of the analytical model for
a stand-alone LRU cache given in [3]. Limited buffers in case
of peer-to-peer networks in wired scenario are also discussed
in [14] which also uses a similar model for network of LRU
caches but their end goal is different from ours.

VIII. C ONCLUSION

In this paper we presented a novel application involving
search and location aware content delivery(in our case adver-
tisements/deals) to the nodes in a Vehicular Adhoc Network.
We proposed a efficient keyword search on this content
overlay. To aid system designers in selection of the design
parameters in their implementation of AdTorrent application,
we present a realistic mobility model for the urban, vehicular
scenario and an analytical model of the epidemic query
dissemination to evaluate the impact of the scope of the query
dissemination on the hit rate. We derived the optimal hit
rate as a function of the cache size and the hop limit and
then developed a model for performance with LRU cache



management when swarming-based content delivery is used.
System designers can use our analytical framework to estimate
the required cache size and scope of the query dissemination
based on user performance requirements. In our evaluation of
some local scenarios, we found that a hop limit of 4 hops
gives an adequate hit rate and that the incremental gain from
increasing the scope of the query flood beyond 4 hops was
minimal. These results are very encouraging in that they show
the feasibility of AdTorrent deployment in urban scenarios.
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