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Abstract— Sensor network nodes are often limited in
battery capacity and processing power. Thus, it is impera-
tive to develop solutions that are both energy and compu-
tationally efficient. In this work, we present a simple static
multi-path routing approach that is optimal in the large
system limit. In a network with energy replenishment, the
largenesscomes into play because the energy claimed by
each packet is small compared to the battery capacity.
Compared to the other routing algorithms in the literature,
this static routing scheme exploits the knowledge on the
patterns of traffic and energy replenishment, and does not
need to collect instantaneous information on node energy.
We also outline possible approaches for a distributed
computation of the optimal policy, and propose heuristics
to build the set of pre-computed paths. The simulations
verify that the static scheme outperforms leading dynamic
routing algorithms in the literature, and is close to optimal
when the energy claimed by each packet is relatively small
compared to the battery capacity.

Index Terms— Energy-Aware Routing, Sensor Network,
Large System, Mathematical Programming/Optimization,
Simulations

I. I NTRODUCTION

Energy-aware routing problem in sensor networks has
received significant attention in recent years [10], [11],
[16], [18], [20], [21]. Finding a good routing algorithm
to prolong the network lifetime is an important problem,
since sensor nodes are usually quite limited in battery
capacity and processing power. For exactly the same
reason, complex routing algorithms do not work well
in this scenario, due to excessive overhead. In this work,
we are interested in finding a simple and static routing
approach. We will also show that under reasonable
assumptions, this static routing algorithm suffices: it is
optimal in the large system limit.

In our context, thelargenesscomes into play because
the energy claimed by each packet is small compared to
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the battery capacity.In this work, we study the routing
problem in sensor networks with energy replenishment.
Energy sources, e.g., solar cells, can be attached to
sensor nodes to prolong the network lifetime [5], [6],
[15]. For any individual node, on the one hand, there
is energy consumption, which is mainly due to radio
communications [1]. There is, on the other hand, incom-
ing energy from the energy source. From this point of
view, the battery acts as an energy buffer. We will show
the optimality of the static routing algorithm when this
buffer size is large, or equivalently, the energy claimed
by individual packets is small compared to the battery
capacity.

In [12], a dynamic routing algorithm, E-WME, was
proposed for sensor networks with energy replenishment.
It was shown to be asymptotically optimal when the
number of nodes in the network is large. One interesting
feature of this algorithm is that it does not need any infor-
mation on the statistics of the input traffic. The E-WME
algorithm is optimal since it achieves a performance
ratio (with respect to the best offline algorithm) that is
logarithmic in the number of nodes in the network. It is
shown in [12] that no algorithm can do better than this
algorithm,if no knowledge about future packet arrivals is
present.However, what if we had some knowledge of the
future packet arrivals? For instance, in a sensor network
that collects video footage at regular intervals, the data
rate may be known a priori. Armed with this kind of
information, an algorithm should be able to perform
better. In fact, the proposed static routing approach in
this paper exploits the available statistical information
on the packet arrivals and energy replenishment.

The rest of this paper is organized as follows: in
Section II, we formulate the problem of energy-aware
routing with energy replenishment, and present our en-
ergy queue model. In Section III, we present our algo-
rithm, show its optimality, and discuss the implications.
We proceed by discussing some issues related to the
implementation of the static approach in Section IV.
Numerical results are provided in Section V. Finally,
concluding remarks are presented in Section VI.



II. PROBLEM FORMULATION

A wireless multi-hop network is described by a di-
rected graphG(V,E), where V is the set of vertices
representing the sensor nodes, andE is the set of edges
representing the communication links between them.
Packets are sent in a multi-hop fashion: a path from
source to destination consists of one or multiple edges.

There areI classes of packets. Each class is associated
with a different source-destination pair, and possibly
different energy requirements for the nodes along the
path. Classi packets arrive to the network according
to a Poisson process with rateλi. For classi, there
are θ(i) pre-computed paths. We useHn

ij to denote the
routing matrix:Hn

ij = 1 if noden is in pathj of classi,
andHn

ij = 0 otherwise. The routing decision on classi
packets can be described as

~pi = (pi1, pi2, . . . , piθ(i)),

wherepij denotes the probability of packets of classi be-
ing sent along thejth path. We use~p = (~p1, ~p2, . . . , ~pI)
to denote the total routing decision. In a dynamic routing
scheme,pij can depend on instantaneous information
such as residual energy and energy replenishment rates
at different nodes, and therefore can be a function of
time. In a static routing scheme, pre-computed~p is used,
which is the same as the static splitting probability in a
proportional routing scheme.
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Fig. 1. The energy queue model: one queue case

Each node is modelled as an energy queue, as shown
in Figure 1. The battery is a buffer of sizeK and
the nodal energy source serves as the server of the
queue. When a real packet is routed through a node (and
therefore incurs some amount of energy to replenish), a
“virtual packet” arrives to the energy queue associated
with this node. Note that our main focus is to model

the dynamics of the energy consumption/replenishment
processes in the network. Since packet transmissions
happen at a much smaller time-scale than the time-scale
of energy replenishment, it is assumed that, when a
real packet is routed through a path without blocking,
a “virtual packet” arrives simultaneously to each of the
energy queues along the path. This is illustrated by
Figure 2. In other words, there is no notion of packets
leaving one energy queue and enter the other. Instead,
the interaction of the queues happens through blocking
and mean service time, which will be discussed next.
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Fig. 2. The energy queue model: multiple queues

If a real packet cannot be sent to the next hop due to
energy depletion at one of the nodes, say noden, along
the route, this packet is blocked. In a dynamic scheme
which utilizes instantaneous system state information, no
virtual packet needs to be added to any of the energy
queues along the path, since the real packet will be
blocked in any case (i.e., there is no gain in admitting the
packet). In a static scheme where instantaneous system
state information may not be available, the packet may
still be relayed down the path until it reaches noden. In
this case, only the upstream nodes from noden receive
the corresponding “virtual packet” arrivals.

The energy queue is work conserving: as long as
there is at least one “virtual packet” in the queue, the
energy source will be working on replenishing the used
energy due to that packet. The time it takes for noden
to replenish the energy consumption due to receiving
and/or transmitting a packet of classi sent on pathj is
i.i.d with mean1/µn

ij . The randomness is mainly due to
the stochastic nature of the energy source: for a given
energy source, the energy replenishment rate can vary
from time to time, even though the overall process is



stationary.1 Furthermore, different energy sources can
have different characteristics in replenishing a certain
amount of energy. That is the reason why the service
time distribution is assumed to be general. The average
energy replenishment rate depends on the following three
factors:
• Node:Heterogeneous energy distribution is allowed

across the network.
• Class:Different classes of packets can have differ-

ent energy requirement for the nodes along the path.
• Path: It is assumed that a node can have a com-

plicated power control scheme in which multiple
transmission power levels are used to communi-
cate with different neighbors. Therefore, the energy
requirement can be different depending on which
neighbor it transmits to.

Since the queueing system has finite buffers and the
input process is memoryless, under any dynamic policy
~g, we assume the system states (the vector of the backlog
of all the energy queues) evolve according to a stationary
and ergodic stochastic process.

Consider any policy~g. Let Ng
ij(0, t) denote the total

number of packets admitted to pathj of classi during
time window [0, t]. Define

λg
ij = lim

t→∞
Ng

ij(0, t)
t

(1)

to be the packet arrival rate of pathj of classi. This is
well defined since the system is stationary and ergodic.

Also let Ni(0, t) denote the total number of classi
packet arrivals in[0, t]. Clearly, we have

λi = lim
t→∞

Ni(0, t)
t

. (2)

Define the average acceptance rate of classi packets
on pathj to be

qg
ij =

λg
ij

λi
. (3)

Then the total acceptance rate for classi packets is∑θ(i)
j=1 qg

ij .
Let Ui(·) be a class-specific utility function of the total

acceptance rate of this class. The utility functionUi(x)
measures the usefulness of having an acceptance rate of
x for class i packets. We make the usual assumption
thatUi(·) is strictly concave and non-decreasing for any
class.

1Note that the energy replenishment process could be non-
stationary over very long periods of time, e.g., night and day.
However, this can be easily handled by developing different solution
for each time of day.

Our goal is to maximize the total weighted utility:

max
g

I∑

i=1

λiUi(
θ(i)∑

j=1

qg
ij), (4)

subject to energy constraints: a packet can be routed
through a path only if all the nodes along the path have
sufficient energy (in other words, space in their buffer).

It is worth noting thatqs
ij = pij(1 − PB,ij) for a

static scheme, wherepij is the pre-computed splitting
probability and PB,ij is the blocking probability of
classi packets on pathj.

We will show that a static routing scheme can have
performance that is arbitrarily close to that of the best
dynamic routing scheme, if the energy claimed by each
packet is small compared to the battery capacity. In other
words, by carefully designing a static scheme, one can
reap most of the benefits of performance without the
high cost of implementation.

III. STATIC ROUTING WITH ASYMPTOTIC

OPTIMALITY

In this section, we will show that the performance
of a carefully designed static routing scheme is asymp-
totically optimal in the large system limit. To this end,
we first find an upper bound on the performance of
the optimal dynamic routing scheme, construct a static
routing scheme from the upper bound, and finally show
the optimal performance of the static scheme if the
energy claimed by each packet is small compared to the
battery capacity.

Before stating our main result, we introduce a few
notation here. In a system where each energy queue has
a buffer of sizeK, let J∗K denote the performance (the
total weighted utility as defined by Equation (4)) of the
optimal dynamic routing, andJs

K the performance of the
static scheme of interest.

Theorem 1:(Asymptotic Optimality of the Static
Routing)
∀ε > 0, ∃δ(ε) > 0, s.t.

lim sup
K→∞

J∗K < lim
K→∞

Js
K + ε, (5)

where the static scheme uses the splitting probability
from the solution~p of the following optimization prob-
lem:



max~p

I∑

i=1

λiUi(
θ(i)∑

j=1

pij), (6)

subject to pij ≥ 0, ∀i, j,
θ(i)∑

j=1

pij ∈ [0, 1], ∀i,

I∑

i=1

θ(i)∑

j=1

λipijH
n
ij

µn
ij

≤ 1− δ(ε), ∀n ∈ V.

Proof of Theorem 1:Please refer to the Appendix for
the proof.

Remarks:
1) From Theorem 1, given a set of packet classes, as

well as a set of pre-computed paths for each class,
a static routing approach can be derived from opti-
mization problem (6) whose total weighted utility
approaches the optimal value when the granularity
of the battery gets finer and finer. The intuition
behind this result is two-fold. First of all, from an
energy conservation point of view, the constraints
in optimization problem (6) give a fundamental
limit on how much utility any dynamic algorithm
can achieve, ifpij in (6) is viewed as the average
acceptance rate of classi packets on pathj under
this policy. Furthermore, the static approach using
the optimal splitting would be in fact optimal, if
there were no blocking, once a packet is assigned
to a path. In fact, the probability of such blocking
goes to zero, as the per-packet energy consumption
becomes smaller and smaller, as compared to the
battery size.

2) There are in fact two types of blocking taking
place here: (a) the static controller decides from
the splitting probability that a packet should be
rejected at the source, and (b) a packet is admitted
to one of the paths, however, one or more of the
nodes along the path in fact does not have enough
energy to forward this packet. When we say in the
above paragraph that the blocking probably goes to
zero, we are referring to the latter case. The reason
why it goes to zero is that the ability for the battery
to absorb the difference between the incoming and
outgoing energy becomes stronger and stronger,
as the per-packet energy consumption becomes
smaller and smaller. It gives one an illusion that it
is the increase in the initial energy that gives rise
to the decrease in blocking probability. In fact, in
Theorem 1, we do not make any assumption on

the initial energy, except that it is certainly upper
bounded by the size of the battery. We can assume
that all nodes have an empty battery to begin with,
and still prove the result of Theorem 1.

3) The convergence of the performance of the static
approach to the upper bound is at least as fast as
1/K, whereK is the battery size measured in per-
packet energy consumption. This is evident from
the second part of the proof in the Appendix.

The static approach is attractive for the following
reasons:

• Unlike a dynamic routing algorithm, there is no
need to collect information on instantaneous nodal
energy. This amounts to a great reduction in rout-
ing overhead, which in turn saves more energy in
communications. In a practical system where some
of the input parameters may be non-stationary (e.g.,
different average rate of energy replenishment due
to seasonal solar radiation), one may need to recal-
culate the optimal routing probability. Nonetheless,
such recalculations can be carried out at a much
lower frequency.

• By using the static splitting probability from (6), the
static approach adapts to the class-specific utility
functions, the traffic load, the topology, and the
available in-network energy resources. For instance,
different shapes of utility function can lead to
different ways of splitting the input traffic. Another
example is the energy-aware admission control. If
the offered traffic load is quite heavy, with respect
to the energy replenishment rate, (6) will produce
an optimal solution that is more conservative in
admitting the packets. In Section V, we provide
some numerical results to further justify the above
claims.

IV. I MPLEMENTING THE STATIC ALGORITHM

A. Distributed Computation of the Optimal Splitting
Probability

To find a way to compute the optimal splitting prob-
ability in a distributed fashion, one possibility is to
consider the dual of (6). The major challenge here is
that the dual function may not be differentiable due to
the lack of strict concavity of the primal function. As
pointed out in [4], there are at least two ways to handle
this problem: one is to use nondifferentiable optimization
[3] to solve the dual, and the other is to use the proximal
minimization algorithm [13]. We will study the use of
both approaches for future work.



B. Obtaining Pre-computed Paths

The proposed static approach is optimalwith respect
to the given set of pre-computed path. Therefore, the
quality of the pre-computed paths affects the optimality
of the static solution. On the one hand, to maximize
the total utility, it is desirable to have a very large set
of alternative paths for each class; on the other hand, to
lower the overall complexity of the algorithm, we need to
limit the number of paths for each class. In fact, there is
probably no need to enumerate all the paths between any
source-destination pair. Consider the case of a network
where the traffic load is relatively uniform. The path that
goes through far away nodes probably would not be used
even if it was included in the set of pre-computed paths.
Therefore, we focus on finding a relatively small set of
“good” paths.

Interestingly enough, it is a routing problem by itself
to select a relatively small set of “good” paths in an
energy-aware fashion. It is then natural to turn to a good
dynamic routing heuristic, e.g., E-WME routing [12], to
obtain a set of pre-computed paths. The idea is to first
cache the paths used by the dynamic routing algorithm
for each source-destination pair, and then use the static
approach to further optimize on top of the given set of
paths.

More specifically, in the sensor networking scenario,
one can design a routing setup phase which happens
during the deployment of the network. Each node begins
by simulating some dynamic routing protocol on the
current topology. It is a simulation in the sense that nodes
do not pass large data packets, and that they use a virtual
battery instead of the real one. When any destination
node receives a simulated data packet, it caches the
path that the packet has traversed. At the end of this
route setup phase, each destination node sends a route
summary to the corresponding source node. The static
approach can then calculate the routing probability using
a distributed solution and take over the routing task.

V. NUMERICAL RESULTS

A. Interaction of Classes: A Simple Example

We now describe the results from our simulations. As
described in Figure 3, this network consists of6 nodes
and 6 links. All nodes have the same battery size. It
takes unit energy to transmit a packet from one node to
another. Table I shows the rate of energy replenishment
at different nodes, where1/µn is the average time for
noden to replenish the energy due to the transmission
of one packet to next hop.
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Fig. 3. Example of a small network

TABLE I

RATE OF ENERGY REPLENISHMENT AT DIFFERENT NODES

µ1 µ2 µ3 µ4 µ5 µ6

1.0 1.0 3.0 3.0 1.0 1.0

There are three classes of packets. Each class of
packets arrives to the network according to a Poisson
process with unit arrival rate. The class-specific concave
utility functions is

Ui(a) =
log(tia + 1)
log(ti + 1)

,

wherea is the total acceptance rate of classi. The utility
function is non-negative, equal to zero ifa = 0, and
equal to one ifa = 1. The parameterti > 0 defines
the concavity of the utility function: the largerti is, the
more concave the utility function is.

Table II summarizes the parameters of the three
classes and the static solution from optimization prob-
lem (6), whereδ is chosen to be0.001. We have the
following observations:

• Class 1 and class3 are symmetric in topology,
nevertheless they have different acceptance rates
in the static solution. This is because their utility
functions are different. The energy available at
nodes2 and 5 is the bottleneck in this scenario,
since we only consider energy consumption due to
packet transmissions. The way the energy resource,
e.g., at node5, is shared between class2 and class3
depends on the shape of their utility function. The
utility function of class3 is more concave. In other
words, given any acceptance rate, class3 has an
utility that is greater than or equal to that of class1
or class2. Therefore, in the optimal static solution,
class3 has the minimum total acceptance rate, since



TABLE II

PARAMETERS OF THE THREE CLASSES AND THE STATIC SOLUTION

classi source destination ti path(s) static solution
1 1 4 1 R11 = [1, 2, 4] p11 = 0.8640

2 3 4 1
R21 = [3, 2, 4]
R22 = [3, 5, 4]

p21 = 0.1350
p22 = 0.7291

3 6 4 100 R31 = [6, 5, 4] p31 = 0.2699

its marginal return diminishes faster than the other
two.

• The interaction of class1 and class2 is through the
resource contention at node2. It turns out they have
the sametotal acceptance rate in the static solution,
since they have the same utility function.

• All of the acceptance rates are non-zero due to the
concavity of the utility functions.

Figure 4 shows that the total utility of the static
routing approaches the upper bound as the battery size
is increased. Each point of this figure is obtained by
running the simulation with different random seeds (the
topology remains unchanged) for100 times and taking
the average of the total end-to-end throughput in the
steady state. The resulted mean packet data rate is then
substituted into the utility function to calculate the total
network utility. The upper bound is computed from
optimization problem (6), whereδ is chosen to be zero.
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Fig. 4. Total utility as a function of battery size

It is evident from Figure 4 that the total utility of
the static solution quickly approaches the upper bound,
when the battery size is reasonably large. For instance,
if each battery supports transmitting50 packets without
replenishment, the gap between the upper bound and the
static approach is less than1.6%.

B. Throughput Comparison: Static versus Dynamic

For this set of simulations, we randomly deploy40
nodes on a10×10 field. Again, all nodes have the same
battery size, and it takes unit energy to transmit a packet
from one node to another. Furthermore, all nodes have an
uniform transmission range (we choose this transmission
range to be3 so that the network is initially connected).
There is a link between nodesn andm if and only if (a)
the distance between them is less than or equal to the
transmission range of a node and (b) noden has enough
energy to transmit a packet fromn to m directly.

There are16 classes of packets, each class with a
randomly generated source-destination pair. The packets
in each class arrive to their source node according to a
Poisson process with rateλi = 0.6. For each node, the
time it takes to replenish the energy due to transmitting
one packet is exponentially distributed with meanµn =
1.

We compared the throughput performance of the fol-
lowing three routing approaches:

• E-WME [12] as the dynamic routing approach. The
E-WME approach has a built-in admission control
component. To decide whether to admit a packet
into the network, the E-WME algorithm compares
the per-packet revenue to the dynamic E-WME cost
metric. Since we want to maximize the throughput
performance, we set the per-packet revenue to be a
constant.

• Static routing proposed in this paper, withδ =
0.001. The set of pre-computed paths is generated
by the E-WME algorithm. For each class of packets,
the first20 paths used by the E-WME algorithm are
cached and later passed to the static routing solver
to compute the static splitting probability. Since we
want to maximize the throughput performance, we
set the utility function to be proportional to the total
acceptance rate.

• Greedy minimum hop routing. This is a greedy
approach in the following sense. On the one hand,
this approach tries to take as little energy as possible
from the network each time by choosing the path



with minimum hop count. On the other hand, there
is no admission control. As long as there is at least
one path with enough energy connecting the source
to the destination, the packet will be accommodated.

The E-WME algorithm is selected for comparison
since it is among the best dynamic energy-aware routing
algorithms. In [12], it is shown that it outperforms
other energy-aware routing algorithms in the literature.
Furthermore, in a competitive ratio sense, the E-WME
algorithm is optimal when number of nodes in the
network is large.

The greedy minimum hop routing is chosen because
it is a natural way to “saturate” the network in order
to determine the network throughput capacity, which is
limited by the energy replenishment. This should provide
a base line approach to which we can compare the more
sophisticated static and dynamic algorithms.

We now sketch the static solution by describing the
routing decision on class16, as shown in Figure 5.
Class16 packets travel from node36 to node6. As we
can see from Figure 5, the static routing solution uses
three paths. An incoming packet of class16 is rejected
with probability Preject = 0.2062. An accepted packet
is then assigned to one of the three paths with different
probability, as indicated in Figure 5. It is interesting to
note that the shortest path (shortest in hop count) is not
the most preferred path in terms of splitting probability.
This is because the routing decision depends on other
classes of traffic, in addition to class16 traffic. The need
to load balance here outweighs the importance of using
the minimum resources. This is consistent with some
observation made in the dynamic routing literature [7],
[12], [14] and the online load balancing literature [2].
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Fig. 5. Multi-path routing solution for class16

Figure 6 shows the throughput comparison of the three
routing approaches as a function of the battery size.

The throughput here is the total long-term rate that the
network can support, summing over all the16 classes.
Each point of this figure is obtained by running the
simulation with different random seeds (the topology
remains unchanged) for10 times and taking the average
of the total end-to-end throughput in the steady state. The
upper bound is computed from optimization problem (6),
whereδ is chosen to be zero.

0 50 100 150 200
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Battery Size

T
ot

al
 D

at
e 

R
at

e

Upper Bound
Static
EWME
Min Hop

Fig. 6. Throughput comparison of the three routing approaches

It is evident from Figure 6 that the static approach out-
performs the E-WME approach and the greedy minimum
hop approach, and the throughput performance is close
to the upper bound, when the battery size is reasonably
large. For instance, if each battery supports transmitting
200 packets without replenishment, the gap between the
upper bound and the static approach is less than0.12%.

There are two major differences between the static
algorithm and the dynamic E-WME algorithm:
• They belong to different information regimes [9].

In the static case, we are using statistical informa-
tion about the input traffic and the rate of energy
replenishment at the nodes. In the dynamic case,
the E-WME algorithm does not utilize this kind
of information explicitly. So one interesting aspect
shown by this set of simulation is how much it helps
if one knows some information about the traffic,
replenishment rate, etc.

• The static approach does not require instanta-
neous information on node residual energy, which
amounts to potentially smaller amount of routing
updates.

In setting up the E-WME approach, we use a set
of parameters specified in [12]. If we use this routing
approach as a heuristic cost metric and further fine-
tune the E-WME routing parameters, it is possible to
see even better throughput performance than the static



routing. However, this kind of fine-tuning is topology-
dependent: different network topology leads to different
optimal dynamic routing parameters. Traffic pattern and
rate of energy replenishment also have some impact
on the choice of the optimal routing parameters. In
the static case, this is automatically taken care of,
since optimization problem (6) uses the topology/traffic
rate/replenishment rate as the optimization constraints.

In general, it may not be important to ask which
approach, static or dynamic, is the optimal solution.
Rather, it is more about the question of which approach
is more suitable for a given scenario. If the application
scenario is such that we know some information about
traffic/replenishment pattern, but the cost is high to
obtain information on instantaneous residual energy, the
static approach is preferred. Otherwise, the dynamic
approach can be an attractive alternative.

VI. CONCLUSION

In this work, we address the problem of energy-aware
routing in networks with renewable energy sources.
Our energy model allows different kinds of energy
sources and heterogeneous energy source distribution.
The network model allows different classes of packets
to have different energy requirement and class-specific
utility function, which is defined on the total acceptance
rate. We show that a carefully designed static routing
algorithm can have performance that is arbitrarily close
to that of the best dynamic routing algorithm, if the
energy claimed by each packet is small compared to the
battery capacity. In other words, by carefully designing
a static scheme, one can reap most of the benefits of
performance without the high cost of implementation.
The results from our simulations confirm the above
claim.

The following are possible directions for future work.
Section IV-A lists a few options to compute the static
solution in a distributed fashion. Instead of using a dual-
ity approach, one can also use a primal algorithm with a
penalty function [19] to solve the optimization problem
approximately. It would be interesting to compare this
approach to the proximal minimization solver, in terms
of complexity and accuracy.

The performance of the static algorithm approaches
the network capacity, which is constrained by the avail-
able energy. In addition to taking energy considerations
into account, our routing decisions should also take
into account different channel conditions, especially in a
wireless environment. The goal will be to develop simple
and static cross-layer algorithms that favor good channel

conditions in order to minimize packet retransmissions,
and thus avoid unnecessary wastage of battery resources.

APPENDIX

Proof of Theorem 1:
(a) Let Jub be the maximum value of optimization

problem (6). We first show thatJ∗K is upper bounded by
Jub + ε.

Let J̃ub be the maximum value of the follow optimiza-
tion problem:

max~p

I∑

i=1

λiUi(
θ(i)∑

j=1

pij), (7)

subject to pij ≥ 0, ∀i, j,
θ(i)∑

j=1

pij ∈ [0, 1], ∀i,

I∑

i=1

θ(i)∑

j=1

λipijH
n
ij

µn
ij

≤ 1, ∀n ∈ V.

Compared to optimization problem (6), the only dif-
ference is that the right hand side of the last inequality
is now 1, instead of(1− δ(ε)).

Let N∗
ij(0, t), λ∗ij , andq∗ij be the corresponding quan-

tities in Equations (1) and (3) for the optimal dynamic
scheme. Since

θ(i)∑

j=1

N∗
ij(0, t) ≤ Ni(0, t),

from Equations (1), (2), and (3), it is evident that(q∗ij)
satisfies

q∗ij ≥ 0, ∀i, j, and
θ(i)∑

j=1

q∗ij ∈ [0, 1],∀i. (8)

Furthermore, since each packet inN∗
ij(0, t) is even-

tually served by the server at noden, if Hn
ij = 1, we

apply Little’s Law on the server at noden for the classi
packets admitted and sent on itsjth path:

E{Ln
ij} =

λ∗ijH
n
ij

µn
ij

,

whereLn
ij is the in-server queue length of packets from

class i, path j. Since the server either processes one



packet when it is busy, or zero when it idles, we have

P{Server Busy at noden}

= E{
I∑

i=1

θ(i)∑

j=1

Ln
ij}

=
I∑

i=1

θ(i)∑

j=1

E{Ln
ij}

=
I∑

i=1

θ(i)∑

j=1

λ∗ijH
n
ij

µn
ij

. (9)

The LHS of the above equation is a probability measure
and therefore upper bounded by1. Sinceλ∗ij = λiq

∗
ij ,

we have
I∑

i=1

θ(i)∑

j=1

λiq
∗
ijH

n
ij

µn
ij

≤ 1. (10)

From Equations (8) and (10),(q∗ij) satisfies the con-
straints in optimization problem (7). It follows that

J∗K ≤ J̃ub. (11)

We claim that the following relationship also holds:

J̃ub < Jub + ε. (12)

From Equation (11) and (12), it follows thatJ∗K < Jub+
ε, which what we want to prove in Part (a).

Now let us show Equation (12) is indeed true. Let
(p0

ij)ij be the solution of optimization problem (7).
Clearly,∀δ ∈ (0, 1), (1−δ)(p0

ij)ij satisfies the constraint
in optimization problem (6). The corresponding function
value of (6) is denoted asJ0

ub. It follows that

J0
ub ≤ Jub. (13)

Also,

J̃ub − J0
ub

=
I∑

i=1

λi


Ui(

θ(i)∑

j=1

p0
ij)− Ui((1− δ)

θ(i)∑

j=1

p0
ij)




≤
I∑

i=1

λiCδ

θ(i)∑

j=1

p0
ij , (14)

whereC is a constant. The above inequality is true since
each Ui(·) is concave and therefore Lipschitz on the
compact constraint set, and there are only finite number
of such functions. Furthermore, we can chooseδ > 0
small enough such that RHS of (14) is less than any
given ε. In other words, we have

J̃ub − J0
ub < ε. (15)

From Equations (13) and (15), we are done proving our
claim (12).

To sum up, in Part (a), we show thatJ∗K < Jub + ε.
(b) Let (pij)ij be the solution to optimization prob-

lem (6), then

Jub =
I∑

i=1

λiUi(
θ(i)∑

j=1

pij).

The performance of the static scheme using(pij)ij as
the splitting probability is

Js
K =

I∑

i=1

λiUi(
θ(i)∑

j=1

pij(1− PB,ij)),

wherePB,ij is the blocking probability of packets from
classi, on pathj.

If we can show that the blocking probability goes
to zero asK → ∞, it follows that Js

K → Jub. This,
combined with Part (a), gives the conclusion in the
theorem.

We now show that the blocking probabilityPB,ij goes
to zero asK →∞.

Let S denote the original system of energy queues
with buffer sizeK, andS̃n the following system: noden
still has buffer sizeK, and all other nodes have infinite
buffer space. LetPn

K,ij and P̃n
K,ij denote the probability

of the energy queue at noden being full in systemS
and S̃, respectively.

Since more virtual packets arrive to the queue at
noden in systemS̃, using a sample path argument, it is
clear thatPn

K,ij ≤ P̃n
K,ij .

Let Rij = (n1, n2, . . . , nm(i,j)) be pathj of classi
packets. LetM be the upper bound on the hop count
of any path. We define eventBij to be the event that
a packet of classi assigned to pathj is blocked, and
Fn to be the event that energy queue at noden full. The
blocking probability of classi packets assigned to pathj
is

PB,ij = Pr{Bij}
= Pr{

⋃

n∈Rij

Fn}

≤
nm(i,j)∑
n=n1

Pn
K,ij

≤
nm(i,j)∑
n=n1

P̃n
K,ij

≤ M max
n∈Rij

P̃n
K,ij . (16)



From the above formula, to showPB,ij → 0, it
suffices to show that̃Pn

K,ij → 0. Note that P̃n
K,ij is

the blocking probability of a singleM/G/1/K queue
with multiple classes of Poisson arrivals. From PASTA
[17], P̃n

K,ij = P̃n
K , whereP̃n

K is the probability of queue
being full, as observed at an arbitrary time. Therefore,
to calculate the blocking probabilitỹPn

K , the queue can
be viewed as aM/G/1/K queue with a single class
arrivals. Consider the correspondingM/G/1/∞ queue,
and define the overflow probability

P̃n
K,∞ = Pr{Qn ≥ K},

where Qn ∈ Z+ is the workload of energy queue at
noden.

A sample path of the workload inM/G/1/K queue
can be constructed from a sample path ofM/G/1/∞
queue by removing all the time intervals when the
workload is aboveK [8]. It is thus clear that

P̃n
K ≤ P̃n

K,∞. (17)

Now we have aM/G/1 queue with infinite buffer, and
we want to show its blocking probabilitỹPn

K,∞ goes to
zero, asK →∞. The arrival rate to thisM/G/1 queue
is

λ̃n =
I∑

i=1

θ(i)∑

j=1

λipijH
n
ij . (18)

A packet from classi on pathj has a mean service
time of 1/µn

ij , therefore the overall mean service time is

1
µ̃n

=

∑I
i=1

∑θ(i)
j=1

1
µn

ij
λipijH

n
ij

∑I
i=1

∑θ(i)
j=1 λipijHn

ij

. (19)

From (18) and (19), the overall load is

ρ̃n = λ̃n
1
µ̃n

=
I∑

i=1

θ(i)∑

j=1

1
µn

ij

λipijH
n
ij . (20)

Recall that (pij)ij is the solution to optimization
problem (6). It follows thatρ̃n < 1. We then invoke
Pollaczek-Khinchine formulas [17], and the expected
queue length is

E{Qn} =
(

ρ̃n

1− ρ̃n

)
[1− ρ̃n

2
(1− µ2

nσ2
n)], (21)

whereσ2
n is the variance of the service time distribution.

Sinceρ̃n < 1, E{Qn} is finite. From Markov Inequality,

P̃n
K,∞ = Pr{Qn ≥ K} ≤ E{Qn}

K
. (22)

Therefore,P̃n
K,∞ → 0, asK →∞. It follows from (17)

that P̃n
K → 0, asK →∞.

Q.E.D.
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