
A Gossip-based Distributed News Service for
Wireless Mesh Networks

Daniela Gavidia
Faculty of Science

Department of Computer Science
Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands

Email: daniela@cs.vu.nl

Spyros Voulgaris
Faculty of Science

Department of Computer Science
Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands

Email: spyros@cs.vu.nl

Maarten van Steen
Faculty of Science

Department of Computer Science
Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands

Email: steen@cs.vu.nl

Abstract— The prospect of having an easily-deployable, self-
configuring network for a relatively low investment has made
wireless mesh networks an attractive platform to provide wireless
services. With the significant attention currently placed on
wireless mesh networking, deployment of these mesh networks
may be imminent. However, even with the infrastructure in place,
development of flexible middleware has yet to reach a level where
it can deliver on the promise of mesh networks due to the special
characteristics of wireless connectivity. In this paper, we propose
a fully decentralized news service based on epidemics. Its simple
design makes for a scalable and robust solution, flexible enough
to be used as the basis for other more sophisticated applications.

I. INTRODUCTION

As advances in wireless networking continue, we are grad-
ually seeing a shift in which distributed (middleware) systems
are moving from wired networks to heterogenous or com-
pletely wireless systems. Notably, wireless mesh networks [1]
offer the facilities to quickly and cheaply set up a networking
infrastructure that can easily span the size of a city. From a
distributed systems perspective, the challenge lies in provid-
ing services that can hide the inherent unreliable nature of
the underlying infrastructure. This unreliability is caused by
failing links and a relatively high rate of joining and leaving
nodes (purposefully or unintentionally), which continuously
affect the topology of the network.

This instability requires that we seek new solutions to well-
known problems. As a step in that direction, we are exploring
how gossiping protocols can help in the construction of highly
robust services. In this paper, we consider the problem of
providing a news service that runs entirely on a wireless mesh
network. This service provides mobile users news items that
are of interest to them. In our approach, we assume that a user,
by means of a PDA or a similar small device, can connect
to an access point (i.e., router) of a wireless mesh network.
When connected, the user can read news items as if accessing
a central database where all items are stored. Using content-
based filtering, for example by means of SQL-like queries,
only the items of interest will be delivered.

The problem we address can best be described as setting
up a simple, self-configuring news service in a mesh network,

under the condition that it be fully decentralized. The reasons
for avoiding a centralized implementation are, in a way, related
to the nature of mesh networks. Wireless mesh networks
are based on the principle of cooperation between routers,
most notably exemplified by routers forwarding packets on
behalf of other nodes. With that in mind, we want to steer
away from a centralized solution where one node is solely
responsible for the availability of the service. A decentralized
solution effectively divides the workload (and responsibility)
among the collection of nodes providing the service, allowing
us to sidestep issues that may arise from having a single
point of failure and single ownership of the service. We
outline the requirements for a successful implementation of
our distributed news service as follows:

• Ease of deployment A collection of nodes should be
able to start providing the service with minimal configu-
ration. Nodes should be able to join the system without
going through complicated bootstrapping mechanisms. In
essence, we desire to have a decentralized system where
nodes can start making a contribution to the service as
soon as they are operational.

• Minimal requirements Contributing to the service
should not be a burden to the nodes in the mesh network.
Memory and computational requirements should be small
enough to allow any router to be part of the service.
No powerful nodes are expected to be in place for high-
performance tasks.

• Robustness The system should be minimally affected
by nodes joining and leaving the network. Moreover,
recovery from significant changes in membership should
be prompt.

• Scalability The service should be able to perform ade-
quately in the face of increasing number of nodes and
news items being published.

• Effectiveness When an item is published, it should be
made available to the interested users in a timely manner.

We expect to meet these requirements by having the routers
in the mesh backbone exchange news items using the epidemic
protocol we introduce in Section III. Epidemic (or gossip-

based) techniques have proved to be a robust, efficient, and
scalable solution for disseminating information in peer-to-
peer networks [2], [3], [4]. Aside from the robustness and
scalability inherent to gossiping, the protocol we present is
characterized by simple, independent one-to-one interactions.
The simplicity of this approach allows any router willing to
participate in the service to start contributing as soon as they
come in contact with a router that is already providing the
service. By basing our solution on gossiping, we expect to be
less vulnerable to topology changes.

Our main contribution is that we embrace the unpredictable
nature of wireless networks and attempt to use this to our
advantage by implementing a gossip-based solution. Our ap-
proach skews deterministic routing in favor of probabilistic
delivery of news. As a result, we can deliver a scalable
and robust service with predictable behavior for large-scale
deployments.

The remainder of this paper is organized as follows. In the
next section, we describe our system model, specifying the
assumptions we make and describing an application scenario
for the news service. Section III details the implementation
of the gossip protocol executed by the network of mesh
routers. In Section IV, the performance of the service from
the user’s perspective is analyzed. Related work is discussed
in Section V. Section VI presents a discussion followed by
conclusions and final remarks in the last section.

II. SYSTEM MODEL

The service we propose is provided by a mesh backbone
composed of a large number of wireless routers. Users running
the news service are able to publish events, which we call
news items, of interest to other users. These users carry around
clients, which are portable devices capable of connecting to the
mesh backbone to retrieve news items. Essentially, the clients
poll the routers for news items matching the interests of users.
By specifying their preferences in advance and using them for
filtering, users are able to receive in their portable devices only
relevant news items.

When initially contacting a mesh router, clients are expected
to send a filter to be used to identify the items of interest to
the user. As long as the client maintains a connection to the
router, it will receive updates whenever new items that match
the users interests are received. Filtering is done at the router to
avoid excessive communication with the client devices, which
may have limited power supplies. Filters are not propagated
through the network.

A. Assumptions

We assume the presence of a large collection of mesh
routers forming a mesh backbone. These mesh routers are not
mobile and, as a whole, provide coverage for an extensive
geographical area. As part of the fixed infrastructure, they do
not have strict constraints on power consumption. We expect
these routers to have a dedicated amount of memory space to
be used for storing news items. These caches will be updated
periodically using the gossip protocol described in Section III.

News items are propagated through the network in the form
of news entries. While a news item is a piece of information,
a news entry is the representation of the news item in the
network and for each news item several news entries may exist.
The dissemination of news entries is done primarily within
the mesh backbone. Each router can communicate wirelessly
with the routers within its range. These routers are called its
neighbors. A unique id is associated with each router. The
entries that a router inserts into the network can be uniquely
identified by a combination of the router id and a sequence
number. In its most basic form, a news entry contains a unique
id, a timestamp and a time-to-live. There may be other fields of
information depending on the application. A limited number of
these entries can be stored by each router in its local cache.
In our experiments, the size of the cache is defined by the
parameter c, which is the same for all routers. The storage
capacity of the network as a whole is then N × c, where N is
the number of routers in the network. Routers in the network
gossip periodically, exchanging the entries in their caches. We
define a round as a gossiping interval in which each router
initiates an exchange once.

The clients in our system are, for the most part, portable
devices, such as phones, laptops or PDAs. These devices have
limited power supplies and, for that reason, do not participate
actively in the dissemination of news items. They do, however,
engage in communication with the routers to be updated on
news events.

B. Application Description

To illustrate the usefulness of the service, we propose a
possible application scenario: advertising in a shopping center
where products on sale need to be promoted. In this scenario,
routers could be located at any other shop. Some routers may
already be in place for use as hotspots or as part of a store’s
accounting system. As computers have become prevalent in
business environments, we do not expect lack of infrastructure
to be a major obstacle for the deployment of the mesh network.
With the mesh network in place, news items advertising
products would be disseminated through the mesh network
and be picked up by the mobile devices that costumers carry.

News entries have a limited lifetime. After this time period
expires, the information they carry is no longer valuable to
clients and should be flushed from the network. Going back
to our example, the lifetime of entries could relate to the time
period when a sale is effective (for example, drink at a discount
price during lunch time).

At any point in time, a router will have a partial view
of the complete set of news items in its cache. We do not
expect each router to store all items. Instead, each router will
devote a fixed amount of memory to store entries it discovers
through communication with other routers. Periodically, this
view will be refreshed with different news entries. According
to the interests that costumers have expressed when contacting
a router, their mobile clients will be updated with relevant
advertisements.

/*** Active thread ***/ /*** Passive thread ***/
// Runs periodically every T time units // Runs when contacted by another router

Q = selectPeer() receive buff recv from any P
buff send = selectItemsToSend() buff send = selectItemsToSend()
send buff send to Q send buff send to P
receive buff recv from Q cache = selectItemsToKeep()
cache = selectItemsToKeep()

(a) (b)

Fig. 1. Skeleton of an epidemic protocol.

III. SHUFFLE PROTOCOL

When a router participates in a gossip exchange, it assumes
either an active or a passive role. Each router initiates an
exchange once per round. We refer to the router that initiates
the exchange as the active one, while the one that is contacted
assumes the passive role.

The data exchange between routers follows a prede-
fined structure. Figure 1 shows the skeleton of the push-
pull epidemic protocol we use for communication within
the mesh backbone. Three methods, selectPeer(),
selectItemsToSend() and selectItemsToKeep()
represent the core of the protocol. By implementing different
policies in these methods, various epidemic protocols, each
with its own distinctive characteristics, can be instantiated.

Based on the structure shown in Figure 1, we introduce
an epidemic protocol we call shuffle. The shuffle protocol is
characterized by avoiding the loss of data during an exchange.
It achieves this by establishing an agreement between peers
that each peer will keep the entries received from the other
after the exchange takes place. We will elaborate on the details
of the exchange later on.

The shuffle protocol is partly based on a peer-to-peer
protocol used for handling flash crowds [5], which we recently
enhanced in order to maintain unstructured overlays that
share important properties with random graphs [6]. The most
important observation to make is that any two nodes that
engage in a shuffle essentially swap a number of entries. In
doing so, they not only preserve the data that are collectively
stored in the network, but also “move” these data around in
a seemingly random fashion. The underlying idea is that by
randomly shuffling data entries between nodes, all nodes will
be able to see all news items eventually.

A. Protocol Policies

In the shuffle protocol, each node agrees to keep the entries
received from a neighbor for the next round. This might seem
trivial, but given the limited storage space available in each
node, keeping the entries received during an exchange implies
discarding some entries that the node has in its cache. By
picking the entries to be discarded from the ones that have
been sent to the neighbor, we ensure the conservation of data
in the network. The policies are summarized as follows:

Method Description
selectPeer() Select a neighbor randomly
selectItemsToSend() Randomly select s entries from

the local cache.
Send a copy of those entries to
the selected peer.

selectItemsToKeep() Add received entries to the local
cache.
Remove repeated items.
If the number of entries exceeds
c, remove entries among the ones
that were previously sent until the
cache contains c entries.

B. Simulation Setup

In order to observe the behavior of the protocol in large-
scale settings, a series of simulations were conducted. We have
learned from earlier studies of other epidemic protocols [7]
that the results from emulations running in a cluster of
hundreds of nodes yield strikingly similar results to simulation
results when observing large-scale behavior. For this reason,
we decided to study the behavior of the protocol presented in
this paper through extensive simulations. The results presented
in this section correspond to a network of 10000 nodes with
a cache size of c, which may vary in different experiments.
Two types of topologies were used in the experiments:

• Grid topology The nodes were set up in a square grid
topology, with 100 nodes on each side over an area of
100 × 100 units. Two cases were explored: (a) the range
of each node was set to 1 unit, making communication
possible with the node’s immediate neighbors to the
North, South, East and West. On average, each node had
3.96 neighbors (due to the effect of boundary nodes with
less than 4 neighbors); (b) the range of each node was
set to 2 units, making communication with 12 immediate
neighbors.

• Random topology The nodes were placed randomly in a
square area of 100 × 100 units. Nodes were allowed to
reach neighbors within a range of 2 units, which was
enough to guarantee that each node had at least one
neighbor and that a path between any two nodes existed.
The average number of neighbors for each node was
12.19.

Both topologies were used to study the behavior of the
protocols. The experiments that we conducted focused on two
characteristics observed during the execution of each epidemic

protocol (a) the replication of items in the network and (b) the
time required to reach all the nodes in the network.

C. Properties

To understand the behavior of the protocol, we focus on
the way a single news entry traverses the network. On first
instance, a news entry is inserted into the network by a router.
Subsequently, the entry takes a step (moves to the cache of
another router) whenever the router that currently holds the
entry participates in an exchange. For every execution of the
protocol, the next step of the entry is chosen randomly. As a
consequence, the path followed by an individual entry consists
of a series of random steps. This behavior is analogous to a
random walk in the space defined by the mesh network.

Additionally, as an entry moves from router to router, there
is a chance that it will be replicated in the caches of the routers
it has passed through, given that there was space available. It
follows that a news item may have several news entries in the
network at the same time. For that reason, when referring to
an item in the network we are actually referring to all news
entries that represent that news item. These entries have the
same id. In the next sections we study the way these entries
are replicated through the network.

1) Distribution of Storage Capacity: Let us first consider
how different news items are distributed through the network.
After running the protocol for several rounds, we observe that
the storage capacity of the network is evenly divided between
the different items. By this, we mean that the slots available to
store news entries are used in a balanced way, with each news
item being able to place approximately the same number of
entries in the network. This behavior is not programmed into
the algorithm, but it is an emerging property resulting from
its repeated execution.

The value to which the number of entries of an item
converges is dictated by the number of different news items
in the network. Given a network of size N where all nodes
have a cache size of c, the network has a total capacity of
N × c. These N × c available slots have to be filled with d
different news items. Because of the randomness introduced
when choosing which entries to exchange, the total capacity
should eventually be evenly divided between the different
items resulting in an average of N×c

d
entries for each of the

d news items. Considering that the protocol does not allow
more than one news entry representing the same news item in
the same cache, this means that c/d of the nodes should have
an item of each of the d different ids:

entries per item =
capacity of the network
number of news items

=
N × c

d

Figure 2 shows the convergent behavior of the protocol. For
the experiment, a collection of 10000 nodes were placed in a
grid topology with 4 neighbors per node and 10 nodes were
randomly selected to generate different news items. Time is
measured in rounds, where a round is a gossiping interval in
which each node executes the exchange protocol once. After
an initial stabilization period, the number of entries in the
system for each of the 10 items converges to the same value.

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

%
 o

f n
od

es
 h

ol
di

ng
 a

 r
ep

lic
a

Number of rounds

Percentage of nodes holding a replica of item X

item 1
item 2
item 3
item 4
item 5
item 6
item 7
item 8
item 9

item 10

Fig. 2. Convergent behavior illustrated by having 10 nodes that generate
news items in a network of 10000 nodes.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

N
um

be
r

of
 r

ou
nd

s

Number of different items

values (shuffle)
average (shuffle)

Fig. 3. Number of rounds required for all the routers in the backbone to
have seen an item using shuffling on a grid topology.

According to our previous reasoning, this value should be
10000× 5/10 = 5000, meaning that 50% of the nodes in the
network have an entry from one of the 10 different news items
available, which is confirmed by our experiments. Similar
convergent behavior was observed when experimenting with
other topologies.

2) Dissemination Speed as a Function of the Diversity of
News Items: To demonstrate the effectiveness of shuffling for
disseminating information, we have conducted experiments
that show the effect of the number of different items on the
dissemination speed of the items through the network. In this
section, we look at the time needed for the news items to
have reached all routers in the network. The results presented
here correspond to a mesh backbone of 10000 routers. Unless
explicitly stated, the routers were set up in a rectangular grid
topology, with 100 routers on each side. For the experiments,
we measure the time it takes for the items to reach all the
routers in the network.

Figure 3 shows the time, measured in rounds, required for
various different items to have passed through the caches
of all the routers in the backbone. The cache size for all
routers was set to 50 and all items in the cache were shuffled
in each round. In each experiment, a different number of
distinct items (starting at 50 and up to 600, with increments
of 50) were inserted into the backbone by routers located in

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

N
um

be
r

of
 r

ou
nd

s

Number of different items

grid range 1
random range 2
grid range 2

Fig. 4. Number of rounds required for all the routers in the backbone to
have seen an item using shuffling on three different topologies.

random locations. For each news item, the time required to
traverse the backbone was measured. Due to randomness in
the exchanges and the location of the routers inserting the
news items, the time measured for an individual news item
may vary significantly compared to the measurements for other
items. By calculating the average time for a news item to
go through the mesh backbone, we can observe that as the
diversity of news items in the network increases the average
time for a specific news item to reach all routers increases
linearly. We observe that this linear behavior is maintained
when conducting the experiments with different topologies, as
shown in Figure 4.

In our third set of experiments, we focus on the effect
of the cache size on the dissemination speed. As before, we
look at the average time required for an item to have reached
all routers in relation to the number of different items being
gossiped. The results, shown in Figure 5, reveal that the slope
of the curve of average values is directly related to the number
of items being shuffled. There is an inversely proportional
relationship between the number of items being exchanged
and the slope of the curve. The four curves shown correspond
to experiments with a cache size of 30, 40, 50 and 60 items. In
all cases, all entries in the cache were exchanged. By doubling
the number of entries shuffled from 30 to 60, the average time
for news items to pass through every router in the backbone is
virtually divided in half. Such a characteristic, as well as the
predictable behavior with an increasing number of different
items, are important factors to consider when choosing an
appropriate value for the cache size c and the number of entries
to shuffle.

3) Robustness: In order to test the robustness of our system
in the case of node failures, we look at a scenario where the
nodes within a limited area go down, not unlike what would
happen in case of a power outage. The experiment, performed
with 10000 routers arranged in a grid with range 1, consists of
observing the number of entries per item in the mesh backbone
before, during and after the failure of all routers within a
square area. We assume that when a router fails, all the entries
in its cache are lost. When the router goes up again, its cache
is empty and has to be populated again.

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600

N
um

be
r

of
 r

ou
nd

s

Number of different items

cache size = 30
cache size = 40
cache size = 50
cache size = 60

(a)

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600
N

um
be

r
of

 r
ou

nd
s

Number of different items

cache size = 30
cache size = 40
cache size = 50
cache size = 60

(b)

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600

N
um

be
r

of
 r

ou
nd

s

Number of different items

cache size = 30
cache size = 40
cache size = 50
cache size = 60

(c)

Fig. 5. Number of rounds required for all the nodes in the network to have
seen an item for different cache sizes with (a) grid topology (range 1), (b)
grid topology (range 2) and (c) random topology (range 2). All entries in the
cache are exchanged.

Figure 6 shows the results of the experiment when 49% of
the routers experience a failure at the same time and recover
100 rounds later. The routers chosen for failure were arranged
in a 70× 70 square inside the 100× 100 grid. Like the exper-
iment in Figure 2, 10 items are being shuffled in the network
and all routers have a cache size of 5. Once the number of
entries per news item has converge to the same value, the
routers chosen for failure go down. As could be expected,
given that the entries were randomly located throughout the
network, the number of entries per item is virtually cut by
half once the failures occur. When the routers that failed rejoin

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 e

nt
rie

s

rounds

item 1
item 2
item 3
item 4
item 5
item 6
item 7
item 8
item 9
item 10

Fig. 6. Number of entries per news item. 49% of the routers go down at
round 200 and recover at round 300.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 e

nt
rie

s

rounds

25% nodes go down
49% nodes go down

Fig. 7. Average number of entries per item. Routers go down at round 200
and recover at round 300.

the network, we observe a smooth transition to the previous
state, with entries quickly populating their caches. Unlike the
first rounds, the entries per item are replicated at roughly the
same rate. This is due to the fact that the routers surrounding
the area of failure already have their caches full of entries
and can update the routers that failed as soon as they become
operational again.

For a clear view of the recovery time, Figure 7 shows
the average number of entries per item. In addition to the
experiment presented earlier, we include the case where 25%
of the routers fail. These routers are arranged in a 50 × 50
square. Comparing both curves, we observe the same behavior
up to the moment of node failures. At that point, the average
number of entries per items falls according to the loss of
storage space. The recovery in both cases is quick despite
the difference in the number of routers that failed.

The speedy recovery of the affected area can be attributed
to information flowing in from multiple sides. For an affected
square area, we would expect the recovery time to be pro-
portional to the square root of n, where n is the number of
routers that experience a failure. As can be seen in Figure 8,
this seems to be the case. The results shown in the figure were
obtained using the random topology with range 2. Several
experiments where routers within a square area failed were
conducted. For each experiment, a square area of a different

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000

re
co

ve
ry

 ti
m

e
(r

ou
nd

s)

number of routers

f(x) = a*sqrt(x) + b
recovery times

Fig. 8. Recovery times when an increasing number of routers fail.

size was used, ranging from 20 × 20 up to 80 × 80 with
increments of 5 distance units on each side. Figure 8 shows
that, indeed, the recovery times obtained from the simulations
tend to be proportional to the square root of the number
of routers affected. To verify this, we also plot the curve
a*sqrt(n)+b which was obtained through linear regression. The
constants have values 0.504244, and 5.18383, respectively.

IV. PERFORMANCE ON THE CLIENT SIDE

In this section, we take a look at the performance of the
news service from the user’s perspective. Users of the service
have access to news items through clients in the mesh network.
These include portable devices such as laptops, PDAs or other
hand-held devices. Due to the variety of news items available
in the network, users need to configure their clients to retrieve
items matching the users interests. Item retrieval is based on
content filtering. Once a connection to a router is established,
clients must submit filtering criteria for the router to identify
which news items to forward to the client.

A. Recall Rate

To evaluate the effectiveness of the news service from the
user’s perspective, we observe the recall rate of items over
time. The recall rate is defined as the number of items of
interest to a user that a router delivers to the client device over
a period of time versus the total number of relevant items. We
test the recall rate through the following experiment:

• A network of 2500 routers is arranged in a 50× 50 grid.
Each router can communicate with its neighbors to the
North, South, East and West.

• 50 users are positioned at random locations.
• 500 news items are being shuffled in the network.
• The interests of the users match 100 news items.

The news items are published at random locations in the
network and shuffled until the number of entries for each item
converges to roughly the same value (as seen in Section III-
C.1). At that point, the clients connect to the nearest router
expressing interest in certain kinds of items. A router responds
by forwarding the matching news items seen in its cache to the
client. Caches are updated with every gossip round prompting
the delivery of previously undiscovered items to the client.

As a result, we expect the recall rate to increase as the client
spends more time connected to a router.

The results of repeating the experiment with different cache
sizes can be seen in Figure 9. The figure shows the average
recall rates for the 50 users. In all cases, the recall rates
increase rapidly during the initial rounds and slow down
when most items have already been discovered. As could be
expected, larger caches lead to higher recall rates of items.
This is due to a higher storage capacity in the network that
allows for more entries to be placed for each news item.
Therefore, the probability of finding a particular item in the
cache of a router increases.

It should be noted that an increase in the total number of
news items would slow down the recall rate, as dissemination
speed decreases with the number of news items in the network.
This effect can be countered by an increase in cache size.
In the remainder of this section, we take a fixed number
(500) of news items and explore the effect of modifying
other parameters, such as the cache size, the number of items
shuffled and the topology of the network, on the recall rate.

B. Probability of seeing an item

Executing the shuffle protocol until the storage capacity of
the network is full yields a probability of c/d of finding a
particular item when examining the cache of a router picked at
random, for c ≤ d. If we define the success of our experiment
as finding a particular item in a random cache and knowing
that the probability of success remains constant, the probability
of succeeding after performing the experiment k ≥ 1 times is:

p(k, c, d) = 1 −

k
∏

i=1

(1 − prob success(i)) = 1 −

(

1 −
c

d

)k

Figure 10 shows the probability of finding an item in a cache
selected at random after k attempts for different cache sizes.
We observe a similar, although not identical, behavior to the
recall rate results presented in the previous section. This is not
surprising, as the shuffle protocol ensures that after each round
a router refills its cache with entries received from a neighbor
chosen at random. However, due to the locality of the gossip
exchanges, when looking at the cache of the same router for
several rounds, we are bound to discover the items held by
our neighbors first. This limits the variety of items we might
see as our neighbors are more likely to hold many of the same
items as we do in comparison to a randomly chosen router in
the network. This accounts for the slightly lower recall rate in
the experimental results compared to the probability of seeing
an item when selecting a random cache every time.

C. Improving Recall Rate

Shuffling provides a random sample of the collection of
items in the network at every round for each router, however,
as can be inferred from Figure 9 and 10, there is a correlation
in the items seen from one round to the next, which accounts
for less than optimal recall rates. In other words, the reason
for the recall rate results not being identical to the probability
in Figure 10 is due to the results from each round not being

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

%
 it

em
s

re
ca

lle
d

rounds

cache size 10
cache size 20
cache size 30
cache size 40
cache size 50
cache size 100

Fig. 9. Recall rate of news items. All entries in the cache are exchanged.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

pr
ob

ab
ili

ty
 (

%
)

number of attempts

cache size = 10
cache size = 20
cache size = 30
cache size = 40
cache size = 50
cache size = 100

Fig. 10. Probability of recalling an item from a randomly filled cache.

independent. This can be attributed to the lack of variety of
items in the neighborhood of a router.

Figure 11 shows the effect of the neighborhood in the recall
rate. We confirm that the recall rate was being hampered by
each router having a limited neighborhood by showing that the
probability of seeing an item when a cache is picked randomly
is the same as the recall rate when the range of a router is
such that it can reach any other router in the network. In the
graph, the results for a network of routers with range 100 and
p(k, 50, 500) overlap. We also show the impact in performance
of doubling the range from 1 to 2 units, effectively increasing
the number of neighbors from 4 to 12. This experiment shows
that it is not necessary to be able to reach every node in the
network to achieve a close-to-optimal recall rate. Finally, as a
worse case scenario, we show what happens if the routers are
arranged in a single line, where each router can only reach
its neighbors to the left and right. In this case, the recall of
items after the first few rounds becomes increasingly slow.
We attribute this to new items being hard to come by after the
items of interest in the immediate neighborhood have been
discovered. Having only two neighbors, the likelihood of new
items reaching the neighborhood is reduced, requiring more
iterations of the protocol to update a cache with different items.
Obviously, this topology is not realistic and should be avoided.

Another option for improving the recall rate without in-
creasing the amount of entries exchanged per round is to

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

%
 it

em
s

re
ca

lle
d

rounds

grid range 1
grid range 2
grid range 100
line range 1
p(k, 50, 500)

Fig. 11. Recall rate of news items.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

%
 it

em
s

re
ca

lle
d

rounds

c = 50, s = 50
c = 50, s = 20
c = 20, s = 20

Fig. 12. Recall rate of news items.

increase the cache size. The results presented previously
assumed that all entries in the cache were exchanged in each
round. Figure 12 shows how increasing the cache size while
exchanging the same amount of entries provides an initial
boost in the recall rate. However, since the speed at which
news items move through the network depends on the number
of entries exchanged per round, having a bigger cache does
not provide any benefits for finding the last few items that
were not originally in the vicinity of the router.

V. RELATED WORK

From a functional point of view, the news service we
propose has some similarity with content-based distributed
publish/subscribe systems [8], [9], [10], [11]. With the increase
in popularity of wireless technology, some publish/subscribe
systems have been extended to support for mobile, wireless
clients [12]. For the most part, the systems proposed use a
single tree-shaped overlay to interconnect a set of brokers
which cooperate to deliver the events published to the appro-
priate subscribers. This approach, while efficient under static
conditions, might face robustness and scalability issues in
highly dynamic environments, such as wireless networks with
mobile users. Efforts in maintaining a tree overlay under fre-
quent topology changes aim at dealing with these issues [13].
However, depending on how frequently the changes occur,
maintaining a tree may introduce additional overhead and

complexity. Our approach offers robustness and scalability at
the cost of periodic communication for gossiping.

Content-based publish/subscribe projects aimed explicitly at
wireless, mobile environments [14], [15], [16] are more closely
related to our work. In particular, systems that rely on proba-
bilistic techniques for the delivery of events. In particular, [17]
combines deterministic routing with probabilistic techniques to
increase the resilience when faced with topology changes.

Our work also relates, in a way, to efforts in distributed
storage [18], [19]. Like our news service, these systems rely
on data redundancy to ensure robustness when node failures
occur. However, while most of these systems carefully place
replicas based on the reliability of nodes, we replicate items
and relocate them in a random fashion. We do, nevertheless,
manage to use the storage capacity in a fair manner, dynam-
ically adjusting the number of replicas of an item according
to the number of items in the network.

VI. DISCUSSION

As mentioned in the introduction, one of the main advan-
tages of having a decentralized system like the one we propose
is avoiding single ownership of the service. Single ownership
implies that one entity is fully responsible for the availability
and quality of the service. This may not be a bad thing from
the point of view of managing the system, however it restricts
others from contributing to the service even when resources
are available. One of the strenghts of our news service is
the flexibility it allows for routers to have some control over
the quality of service they offer. As explained in Section IV,
the quality of the service as perceived by the users can be
improved by increasing the wireless range or the amount of
memory allocated for storing entries. Decisions to do so can
then be taken on an individual basis by the administrators of
each router.

Taking a more active approach for the recall of items is
also a possible way of improving the perceived performance
from the users point of view. As explained, clients connect
to a nearby router and retrieve news items matching the
user’s interests. While the matching news items from the
router’s cache will be made available to the client immediately,
discovering the totality of relevant news items may take several
rounds and, depending on the time period between rounds, this
delay might inconvenience some users. Instead of passively
waiting for the news items to arrive, a router may decide to
forward the user’s filter to other routers, thus increasing the
chances of discovering relevant news items. For example, we
can calculate that for c/d = 0.2 it would take at least 10
rounds to retrieve approximately 90% of all items. In this
case, by forwarding the filter to 4 other routers, the client
could receive almost all news items in 2 rounds.

The flexibility of being able to independently decide on the
amount of resources to invest in the news service coupled
with the minimal requirements to participate opens up the
possibility of deploying the service on a large scale using
heterogeneous nodes. Deploying the service over large ge-
ographical areas, such as a campus or a city, may require

some considerations in the dissemination of news items. As
mentioned before, we impose a time limit for the validity of
the entries in the network. However, when disseminating the
entries over a large area, it may also be necessary to establish
geographic constraints. By adding location-awareness to the
shuffling of entries, news items could be dispersed over limited
areas. For example, an entry may be forwarded only within
a radius from the location where it originated. As a result of
restricting the area over which an entry can travel, space which
would otherwise be taken by these entries is freed increasing
the number of different items that the network can hold.

Another consideration to keep in mind is security. A gossip-
based system like the one we propose is specially susceptible
to denial-of-service attacks. We can imagine a scenario where
a malicious node generates bogus news items and inserts them
into the network at a high rate. Having large numbers of items
at the same time slows down the dissemination speed, as there
are less entries per item in the network. Without any security
mechanisms in place, a single node could virtually bring the
service to a halt. It is clear that some kind of regulation
regarding who can publish news items is necessary.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a highly robust distributed news
service suitable for wireless mesh networks. We have shown
that by using an epidemic protocol at the core of our service,
we can provide an efficient and scalable solution for delivering
news items while, at the same time, offering the participating
routers the flexibility of managing their own resources to better
suit their clients needs. Through the use of simulations, we
analyzed the effectiveness and robustness of the dissemination
of items through the mesh backbone. We corroborated the
effectiveness of the service by taking the user’s perspective
and providing an analysis of the quality of the service in terms
of the delivery of relevant news items to the client devices.

Regarding future work, in addition to the issues already
addressed in the discussion, we expect to explore other types
of services that could be deployed on top of these networks.
Even though large deployment of mesh networks is not yet
a common ocurrence, we intend to focus on developing
distributed solutions for large-scale networks with the belief
that a collaborative effort can yield efficient results under the
sometimes unpredictable conditions of wireless networks.

REFERENCES

[1] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: A
survey,” Computer Networks Journal (Elsevier), March 2005.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing (PODC ’87), ACM,
Ed., Vancouver, Canada, August 1987, pp. 1–12.

[3] K. P. Birman, “The surprising power of epidemic communication,” in
Future Directions in Distributed Computing: Research and Position
Papers, January 2003, vol. 2584/2003, pp. 97–102.

[4] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.,
“The Peer Sampling Service: Experimental Evaluation of Unstructured
Gossip-Based Implementations,” in Middleware 2004, ser. Lecture Notes
on Computer Science, vol. 3231, ACM/IFIP/USENIX. Berlin: Springer-
Verlag, Oct. 2004, pp. 79–98.

[5] A. Stavrou, D. Rubenstein, and S. Sahu, “A Lightweight, Robust P2P
System to Handle Flash Crowds,” IEEE Journal on Selected Areas in
Communication, vol. 22, no. 1, pp. 6–17, Jan. 2004.

[6] S. Voulgaris, D. Gavidia, and M. van Steen., “Inexpensive Membership
Management for Unstructured P2P Overlays,” Journal of Network and
Systems Management, vol. 13, no. 2, pp. 197–217, June 2005.

[7] S. Voulgaris and M. van Steen, “An Epidemic Protocol for Managing
Routing Tables in very large Peer-to-Peer Networks,” in Proc. 14th
IFIP/IEEE Workshop on Distributed Systems: Operations and Manage-
ment (DSOM 2003), Oct. 2003, pp. 41–54.

[8] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and evaluation of a
wide-area event notification service,” ACM Trans. Comput. Syst., vol. 19,
no. 3, pp. 332–383, 2001.

[9] G. Cugola, E. D. Nitto, and A. Fuggetta, “The JEDI event-based
infrastructure and its application to the development of the opss wfms,”
IEEE Trans. Softw. Eng., vol. 27, no. 9, pp. 827–850, 2001.

[10] P. R. Pietzuch and J. Bacon, “Hermes: A distributed event-based
middleware architecture,” in ICDCSW ’02: Proceedings of the 22nd In-
ternational Conference on Distributed Computing Systems. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 611–618.

[11] B. Segall and D. Arnold, “Elvin has left the building: A pub-
lish/subscribe notification service with quenching,” in Proceedings
of the Australian UNIX and Open Systems User Group Conference
(AUUG’97), September 1997, pp. 243–255.

[12] M. Caporuscio, A. Carzaniga, and A. L. Wolf, “Design
and evaluation of a support service for mobile, wireless
publish/subscribe applications,” IEEE Transactions on Software
Engineering, vol. 29, no. 12, pp. 1059–1071, Dec. 2003. [Online].
Available: http://serl.cs.colorado.edu/ carzanig/papers/

[13] G. Picco, G. Cugola, and A. Murphy, “Efficient content-based event
dispatching in the presence of topological reconfigurations,” in Proc.
of the 23 Int. Conf. on Distributed Computing Systems (ICDCS 2003),
2003. [Online]. Available: citeseer.ist.psu.edu/picco03efficient.html

[14] G. Cugola, A. L. Murphy, and G. P. Picco, “Content-based Publish-
subscribe in a Mobile Environment,” in Mobile Middleware, P. Bellavista
and A. Corradi, Eds. CRC Press, 2005, invited contribution. To appear.

[15] Y. Huang and H. Garcia-Molina, “Publish/subscribe tree construction
in wireless ad-hoc networks,” in MDM ’03: Proceedings of the 4th
International Conference on Mobile Data Management. London, UK:
Springer-Verlag, 2003, pp. 122–140.

[16] R. Meier and V. Cahill, “STEAM: Event-based middleware for wireless
ad hoc networks,” in Proceedings of the 1st International Workshop
on Distributed Event-Based Systems (DEBS ’02), Vienna, Austria, July
2002.

[17] P. Costa and G. P. Picco, “Semi-probabilistic content-based publish-
subscribe,” in ICDCS ’05: Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems (ICDCS’05). Washing-
ton, DC, USA: IEEE Computer Society, 2005, pp. 575–585.

[18] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly durable,
decentralized storage despite massive correlated failuresglacier: Highly
durable, decentralized storage despite massive correlated failures,” in
Proceedings of the 2ndt USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’05), Boston, Massachusetts, May
2005.

[19] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
“Farsite: federated, available, and reliable storage for an incompletely
trusted environment,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 1–14,
2002.

