
 
 

  
Abstract—Considerable research has been done on the content-

based image delivery and access in distributed repositories. As 
noted in the literature, there is always a tradeoff between the 
image quality and the access speed. In addition, the overall 
performance is greatly determined by the distribution of the 
image data, specially, in a heterogeneous environment. In this 
paper, a semantic-based image access scheme for a distributed, 
mobile, heterogeneous database infrastructure, the Ubiquitous 
Content Summary Model, is presented that addresses both the 
data quality and performance issues. With the ability of 
summarizing the content information and guiding the data 
distribution, the proposed solution is distinguished by its 
mathematical representation and concise abstraction of the 
semantic contents of image data, which are further integrated to 
form a general overview of a image data source and its 
application of word relationships to construct a hierarchical 
meta-data based on the summary schemas allowing imprecise 
queries. Furthermore, it achieves the optimal performance in 
terms of searching cost. The fundamental structure of the 
proposed model is presented.  
 

Index Terms—Mobile Image Retrieval, Content Distribution, 
Data Integration, Ontology Model 
 

I. INTRODUCTION 
EARCHING and accessing image data from a collection of 
heterogeneous mobile data sources such as sensor or ad 

hoc networks is becoming important in many applications. 
Undoubtedly, image information is among the most powerful 
representations of the human thought ─ representation of 
entities as objects and representation of the complex objects in 
term of simpler objects [6]. However, image data is also one of 
the most non-manipulative structures in computers [2]. 
Indexing on images is rather difficult, which makes accessing 
or semantically organizing image data more difficult to realize. 
In a heterogeneous distributed environment, the autonomy and 
heterogeneity of local databases introduce additional comple-
xity to efficient representation and manipulation of image data. 
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Traditionally feature vectors as the representative of image 
data are employed to facilitate content-based query processing 
[3, 8, 17]. For an application-specific domain, the features 
from image data, empirically or heuristically, are extracted, 
integrated, and represented as some vectors according to the 
predefined application criteria. Due to the application-specific 
requirements, this approach lacks scalability, accuracy, robust-
ness, and efficiency. 

As a better alternative, one can manipulate the image data at 
a unified semantic-entity level. In this approach, the hetero-
geneous image data sources are integrated into a unified 
format — in spite of their differences. In addition, in this 
unified paradigm, different types of media (audio, video, 
image, and text) can be considered as inter-convertible objects. 
With the thorough understanding of the image content, this 
paradigm provides the QoS-guaranteed query processing with 
higher scalability and lower resource requirements.  

In this work, we present an iterative method to represent a 
image object as a combinatorial expression of its simpler 
objects. In addition, a novel content-aware image indexing and 
accessing scheme for a heterogeneous distributed database 
environment is discussed. The proposed scheme, as a target 
platform, is used and enhanced based on the proposed content-
aware accessing scheme ─ Ubiquitous Content Summary 
Model (UCSM). With the guidance of these summaries, the 
content-based image retrieval scheme offers superior perfor-
mance than several well-known image indexing schemes, as 
demonstrated in our experiments. 

This paper is organized into seven parts: Section 2 briefly 
overviews the related work and background materials. Section 
3 addresses the concepts of the UCSM. Section 4 introduces 
the methodology framework. Section 5 analyzes the perfor-
mance of the proposed model. Section 6 further discusses the 
description of image data contents within the framework of 
enhanced UCSM. Finally, section 7 draws the paper to a 
conclusion.   

 

II. BACKGROUND AND RELATED WORK 

2.1 Image Retrieval 
As witnessed by the literature [3-12], the research on the 

content-based image retrieval processing has focused on three 
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interrelated issues: 
•  Representation of the image entities, 
•  Indexing and organization of the image entities, and 
•  Query processing strategies of image databases. 

It should be noted that, most of the solutions that have 
advanced in the literature, study the image entities within the 
scope of the object oriented paradigm and hence, quantify a 
image data entity based on the features of its elementary 
objects. 

Image data representation 

The feature-based representation models can be further 
classified into four classes: the cluster-based organization, 
representative region approach, annotation-based organization, 
and decision tree-based organization [7-10]. 

The clustering-based approach partitions the image data 
objects into clusters of semantically similar objects [7, 20- 24]. 
The clustering approach can be further grouped into the 
supervised and unsupervised mode [7, 23, 24]. The supervised 
clustering approach utilizes the user’s knowledge as input to 
cluster image objects, and hence it is not a general purpose 
clustering approach. As expected, the unsupervised clustering 
approach does not need the interaction with user. Hence, it is 
an ideal mechanism to cluster unknown image data 
automatically. Alternatively, the representative region 
approach, according to the Expectation Maximization (EM), 
constructs a simple description of the image objects based on 
several of the most representative regions of the objects [8, 
25]. Motivated by the text attachment of image objects, the 
annotation-based organization paradigm makes use of 
manually or automatically added annotations [9]. Finally, 
integrated with the relevance feedback, the decision-tree-based 
approach organizes image data in a hierarchical fashion that 
separates the data by recursively applying decision rules [10, 
26, 27, 28]. 

Efficient indexing scheme 

Employment of efficient indexing is the key issue to the 
real-time retrieval of the image data . Efficient indexing is 
relatively more complicated when heterogeneous image data 
sources need to be integrated together. Two classes of 
indexing schemes have been discussed in the literature: The 
partition based indexing and the region-based indexing. 

The partition-based indexing scheme, Quad-tree [11, 29], 
K-d-tree [15, 30], and VP-tree [16, 31], is a top-down process 
that recursively, divides the image object (or multidimensional 
feature space) into disjoint partitions while constructing a 
hierarchical data structure that represents the index of the 
image object. The region-based indexing scheme, R-tree [12], 
R*-tree [13], and SR-tree [14], takes a bottom-up approach in 
forming an access index ─ regard the image data as point 
objects in multi-dimensional feature space, employ some small 
regions to cover all the points, and then recursively, combines 
small regions into larger groups (how does the index form). 

Efficient query processing 

Searching for the image data is the crucial step in providing 
real-time image services. Based on the type of information 
submitted to the search engine, three searching strategies have 
been recognized: keyword querying, example matching, and 
fast browsing [18]. Cox et al. [18] proposed a Bayesian image 
retrieval system that accommodated all these three strategies. 

Within the scope of a networked environment, the literature 
has addressed several practical image systems. The IBM 
Query by Image Content project (QBIC System by IBM 
Almaden Research Center) [3] allows users to query an image 
collection using features of image content – colors, textures, 
shapes, locations, and layout of images and image objects. 
Multi-dimensional feature vectors are employed to describe 
image content, with an R*-tree as the indexing structure. 
Speech Recognition (Jabber experimental system) [4] uses 
concept clustering based on indexing on audio content of a 
videoconference. It employs word recognition facility to set up 
an index based on the recognized words. To find the main 
topics and make a meaningful index, the Jabber system uses 
several lexical conglomerates, such as chains, trees, and 
clusters. The system uses surrounding words as restrictions, 
then compares the semantic distances of different 
relationships, and finally determines the relationship with 
minimal distance as the meaning of specified word. The 
Photobook System (developed by the MIT Media Lab) [5] is a 
system for Face recognition based on eigenvector descriptor. 
The Photobook System efficiently uses "distance-from-feature-
space" (DFFS) to detect eigen-features. Given an input image, 
a feature distance-map is built by computing the DFFS at each 
pixel. The global minimum of this distance map is then 
selected as the best feature match. 

In spite of the progress reported in the literature, the 
content-based image research is in its infancy . The scope of 
research in image database extends drastically when 
parameters such as autonomy, heterogeneity, mobility, and 
wireless limitation are added to the mix [6]. 

2.2 Multi-Database Systems 
A multi-database system MDBS is a distributed system that 

acts as a global layer sitting on top of multiple preexisting 
distributed, autonomous, and heterogeneous local databases 
{LDBSi, for 1 < i < n} [1]. The local databases are connected 
via wired/wireless networks to form a global information 
sharing system. The local databases play dual roles in 
managing the data sources: On one hand, each local database 
LDBSi located at site LSi, manages its local dataset LDSi. On 
the other hand, all local databases are harmonized under the 
restriction of a global access control mechanism. Figure 1 
depicts a multi-database system. 

Two types of requests exist in a multi-database system: local 
requests and global requests. The local requests are performed 
by the local database systems autonomously. The global 
requests, however, require the cooperation among local data- 

 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1: The Multi-database System. 
 
bases. Normally, a global request Rg is the combination of a 
set of sub-requests {Rg

[ i ], for 1 < i < m}, where each sub-
request Rg

[ i ] is treated as a local request that can be executed 
on one of the local databases. The global request Rg is 
complete only after all the sub-requests are terminated at the 
local databases. 

2.3 Summary Schemas Model 
The Summary-Schemas Model (SSM) was proposed as a 

solution to large-scale multi-database systems [1, 19, 32]. It is 
a content-aware infrastructure that enables imprecise query 
processing on distributed heterogeneous data sources. The 
scalable content-aware query processing is made possible with 
the aid of an indexing meta-data based on the hierarchy of 
summary schemas, which comprises three major components: 
a thesaurus, a collection of autonomous local nodes, and a set 
of summary-schemas nodes. 

The thesaurus provides an automated taxonomy that 
categorizes the local access terms and defines their semantic 
relationships ─ the thesaurus may utilize any of the off-the-
shelf thesauruses (e.g. Roger’s Thesaurus) as its basis. A 
Semantic-Distance Metric (SDM) is defined to provide 
quantitative measurement of “semantic similarity” between 
terms [19]. A local node is a physical database containing the 
data sources in different forms and representation, i.e., image 
data, textual data, formatted data. The local node is organized 
autonomously, on condition that its semantic content is 

communicated to the global mechanism at the thesaurus level. 
With the help of the thesaurus, the local access terms are 
classified, mapped, and integrated to their hypernyms. A 
summary schemas node is a virtual database concisely 
describing the semantic contents of its child (children) node(s). 
More detailed descriptions about the SSM can be found in [1, 
19, 32]. 

In contrast with other multi-database solutions, the SSM has 
the following properties due to its unique semantic-based 
organization: 

•  The SSM allows automatic semantic-based data 
integration regardless of the heterogeneity of data 
sources. 

•  The SSM allows imprecise query processing. As a result, 
a user is able to submit his/her request in a free format 
notation. 

•  The SSM provides highly efficient content-based 
indexing capability. 

•  The SSM offers high scalability and robustness. 

3 PRELIMINARIES 
To overcome the aforementioned shortcomings of existing 

image systems, we introduced a novel image access paradigm 
based on the summary schemas model (SSM). As a scalable 
content-based scheme, the SSM prototype was originally 
proposed to resolve the name differences among semantically 
similar data in multi-database systems. Due to its concise 
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structure and strong cross-modal representation capability, the 
SSM provides an efficient method of accessing image data.  

3.1 Representation of Image Objects 
The foundation of most image retrieval systems is the 

feature representation of image objects [2]. Extracted in the 
preprocessing stage of image representation, the features play 
an important role in quantizing the non-structured image data. 
The following definitions are the fundamental concepts of 
image retrieval systems. 
Definition 1: Feature extraction 

Assume I = {Ij | 1 < j < n} is a set of image objects, and Φ = 
{ϕi | 1 < i < m} is the ordered mask of feature extraction 
priorities. The feature extraction process is a function f: I × ΦΦΦΦ 
→→→→ D, where D is the feature destination set. D could be a set 
of high-dimensional vectors, a set of cluster IDs, or real 
numbers indicating the semantic cluster that the image object 
belongs to. 

In the image retrieval systems, there are two types of 
features: granule-level features and object-level features. The 
granule-level features are derived from the original format of 
image storage — i.e., those characteristics that directly or 
indirectly are obtained from the pixels, such as colors, 
textures, saturation. The object-level features, in contrast, are 
obtained from the recognition of the higher-level 
understanding of the image data — the semantic topics of the 
image data. In the aforementioned image retrieval system, the 
object-level features can be the recognized as elementary data 
items, shapes, spatial relationship, and etc. 
Definition 2: Semantic distance 

Suppose I = {Ij | 1 < j < n} is the set of image objects, and 
ΦΦΦΦ = {ϕi | 1 < i < m} is the ordered mask of feature extraction 
priorities. The semantic distance on feature ϕi is a function gϕi: 
I × I →→→→ R, where R is the set of real numbers. The semantic 
distance function gϕi compares two image objects and returns 
their semantic distance. 

The function gϕi satisfies the following characteristics: 
1) For any pair of image objects x and y: gϕi (x, y) > 0, 
2) gϕi (x, y) = 0 iff  x = y, 
3) For any pair of image objects x and y: gϕi (x, y) = gϕi 

(y, x), and 
4) For image objects x, y, and z: gϕi (x, y) + gϕi (y, z) < gϕi 

(x, z).   
The semantic distance provides a quantized measure of 

comparing the difference between image objects. Based on the 
definition of semantic distance, we introduce the nearest 
neighbor concept that is widely used in most image retrieval 
systems.  
Definition 3: The 1-nearest neighbor 

Assume I = {Ij | 1 < j < n} is the set of image objects, Φ = 
{φi | 1 < i < m} is the ordered mask of feature extraction 
priorities, W = {wi | 1 < i < m} is the set of weights of the 
feature extraction priorities, and X is the image object that is 
used as the query example. The nearest-neighbor searching 
process is a function Q: 

Q (X, I, Φ, W) = {Ii | Ii = min{∑m
k=1(gφk (X, Ij)* wk)}n

j=1} 
Definition 4: The K-nearest neighbor 

Assume I = {Ij | 1 < j < n} is the set of image objects, Φ = 
{φi | 1 < i < m} is the ordered mask of feature extraction 
priorities, W = {wi | 1 < i < m} is the set of weight of the 
feature extraction priorities, K is the parameter indicating the 
number of nearest neighbors, and X is the image object that is 
used as the query example. The K-nearest-neighbor searching 
process is a function Q*: 

Q* (X, K, I, Φ, W) = {Ii |    |Q* (X, K, I, Φ, W)|=K, ∀ I’
j 

∉  Q*(X, K, I, Φ, W),        ∑m
k=1(gφk (X, Ii)* wk) < ∑m

k=1 

(gφk(X, I’
j)* wk)} 

The 1-nearest-neighbor search returns the image objects 
with the smallest semantic distance from the query example. 
The K-nearest-neighbor search returns K image objects, with 
the decreasing order of their similarities to the query example. 

Based on the definition of semantic distance, the nearest-
neighbor search can be performed in a multi-dimensional 
space of features. If we consider each feature as a dimension, 
the image object can be considered as a vertex in the 
multidimensional space of features. In this multidimensional 
space, the semantic distance between image objects is 
quantified as the spatial distance between vertices. The nearest 
neighbors should have similar positions as the querying 
example object. In another word, the nearest neighbors resides 
within a sphere whose center is the querying image object 
(Figure 2). In Figure 2, the semantic distance between any 
nearest neighbor and the querying image object is less than the 
radius of the sphere.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The search sphere for nearest neighbors. 

Definition 5: The Elementary Entity 
The elementary entities are those data entities that 

semantically represent basic objects (objects that cannot be 
divided further). Formally, the semantic contents of an 
elementary entity (E) can be considered as a first-order logic 
expression. 
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Let E = f1 ∧  f2 ∧  …∧  fn, where fi = pi1 ∨  pi2 ∨ … ∨  pim is the 
disjunction of some logic predicates (true/false values) and pi1 
… pim form a logic predicate set Fi, ─ In the feature-based 
image data sets, fi indicates the ith feature of the elementary 
entity. The semantic contents of an elementary entity can then 
be defined as: 

E    =  ∧
=

n

i 1
( ∨

=

m

j 1
pij), for every pij ∈  Fi.  

Note that in any term fi = pi1 ∨  pi2 ∨ … ∨  pim, there is one 
and only one true predicate pij.. For instance, if pi1, pi2 …  pim 
correspond to all possible color patterns, the semantic content 
of fi at any time is a specific color pattern. Since fi is 
disjunction of pi1, pi2 …  pim, the false predicates do not affect 
the final result. The content of an elementary entity is 
restricted by its conjunction terms f1, f2 … fn, which are the 
extracted features in application domains. 
Definition 6: The Image Object 

A image object is a collection of elementary entities. Given 
the above definition of elementary entities E1, E2, …, Ek, the 
semantic contents of a image object can be defined as: 

S    =  r
k

i 1=

 Ej . 

According to the definitions 5 and 6, a image object is 
considered as a combination of logic terms, whose value 
represents its semantic content. The analysis of semantic 
contents is then converted to the evaluation of logic terms and 
their combinations. This content representation approach 
offers the following advantages:  

•  The logic terms provide a convenient way to describe 
semantic contents concisely and precisely ─ The features 
of any elementary image object can be determined easily, 
hence, the semantic content of a complex image object 
can also be obtained using logic computations. The 
similarity between objects can be considered as the 
equivalence of their corresponding logic terms. 

•  This logic representation of image content is often more 
space efficient than feature vector. In a specific image 
database system, the feature vector is often of fixed 
length to facilitate the operations. However, for some 
objects, some features may be null. Although these null 
features do not contribute to the semantic contents of 
image objects, they still occupy space in the feature 
vectors, and hence lower space utilization. In contrast, 
the logic representation can improve storage utilization 
by eliminating the null features from logic terms. 

•  Compared with feature vectors, the logic terms provide 
an understanding of image contents that is closer to 
human perception. 

•  Optimization can be easily performed on logic terms 
using mathematical analysis. By replacing long terms 
with mathematically equivalent terms of shorter lengths, 
the image representation can be automatically optimized. 

•  Based on the equivalence of logic terms, the semantically 

similar objects can be easily found and grouped into the 
same clusters. This organization facilitates the nearest-
neighbor retrieval, and at the same time reduces 
overlapping and redundancy. Hence, searching efficiency 
and storage utilization are both improved. 

An interesting issue is that the logic representation approach 
can be seamlessly integrated with SSM. Each concept in the 
logic representation can find its counterpart in SSM, and hence 
can be performed within the domain of SSM. For instance, the 
equivalence between logic terms can be considered as the 
synonym relationship between summary schemas. Hence, the 
operation of finding equivalent terms in logic domain can be 
mapped to searching for synonyms in summary schemas 
domain. Similarly, other relationships between logic terms can 
also be conveniently represented in SSM. If term A is equal to 
a part of term B, then this “inclusion” relationship between A 
and B can be described with hypernym and hyponym 
relationships in SSM. Considering the strengths of SSM in 
organizing data [1, 19], we incorporate the logic representation 
within the framework of SSM. For simplicity, we consider 
logic term and summary schema as the same concept in the 
remaining part of this paper.  

3.2 The Rationale of UCSM 
The UCSM, the integration of SSM with logic predicate 

representation of image data contents, takes the 
aforementioned concepts further to a more general 
representation of image contents, with a series of interrelated 
access terms representing the relationship among image 
objects at the data base granularity level. As noted before, the 
SSM organizes and classify the data sources based on database 
semantics – database schemas and summary schemas, and 
word relationships. Within the SSM terminology then, a 
database schema is a group of access terms that describe the 
contents of image data source. A summary schema is a concise 
abstract of semantic contents of a group of database schemas. 
The summary schemas are connected through synonym, 
hypernym, and hyponym links. These links are logically used 
to represent the semantic relationship among image data 
objects. 

Synonym links in the UCSM hierarchy are used to represent 
the semantically similar data entities regardless of their 
representation and/or access term differences. Refer to our 
methodology; a synonym link represents equivalence 
relationship between two image (or two groups of image) data 
objects. For instance, assume in an image environment, photos 
are grouped according to their authors. As a result, two similar 
photos taken by different authors will be kept in different 
databases. To represent similarity relationship between these 
two photos kept in two different databases, the UCSM 
employs synonym links to connect and group the similar image 
objects together. 

•  A hypernym is the generalized description of the 
common characteristics of a group of data entities. For 
instance, the hypernym of dogs, monkeys, and horses is 
mammal. To find the proper hypernyms of image 



 
 

objects, the UCSM maintains an on-line system 
taxonomy that provides the mapping from image objects 
to hypernym terms. Based on the hypernyms of image 
objects, the UCSM can generate the higher-level 
hypernyms that describe the more comprehensive 
concepts. For example, the hypernym of mammals, birds, 
fish and reptiles is animal. Recursive application of 
hypernym relation generates the hierarchical meta-data 
of the UCSM. This in tern conceptually gives a concise 
semantic view of all the globally shared image objects. 
Refer to our methodology; a hypernym link represents “a 
member of” relationship. 

•  A hyponym is the counter concept of a hypernym. It is 
the specialized description of the precise characteristics 
of image objects. It inherits the abstract description from 
its direct hypernym, and possesses its own particular 
features. The UCSM uses hyponyms links to indicate the 
hyponyms of every hypernym. These links compose the 
routes from the most abstract descriptions to the specific 
image objects. 

One of the merits of the UCSM is the ease of nearest-
neighbor search operation. In the UCSM, the nearest neighbors 
are considered as synonyms that are connected through 
synonym links. As a result, the nearest-neighbor search is 
simplified into a process of finding the synonym links. In other 
indexing models, the nearest neighbor indexing is a time-
consuming process that requires searching through a subset of 
the distributed image databases [13, 14, 16]. 

3.3 The Structure of Summaries 
The heart of the UCSM prototype is the generation of 

summary schemas, which imply the semantic content of image 
objects. Motivated by the observation that the low accuracy of 
the present image retrieval systems is due to the improper 
selection of granule-level features as the representation 
foundation, UCSM prototype employs the object-level features 
obtained from some computer vision algorithms [17, 25]. 
Since these object-level features usually have stronger 
descriptive capability than granule-level features, the summary 
schemas are able to describe the semantic contents of image 
data using more concise terms. 

To represent the content of image objects in a computer-
friendly structural fashion, the UCSM organizes the image 
objects into layers according to their semantic contents. A 
image object, say, an image, can be considered as the 
combination of a series of elementary entities, such as animals, 
vehicles, and buildings. 

4 PROPOSED METHODOLOGY 
Based on the summary schemas topology, the image 

databases are organized in a hierarchy, which consists of leaf 
nodes and intermediate summary schema nodes. The leaf 
nodes, containing the real data, are clustered according to their 
semantic contents. The common information of each group is 
extracted and kept in a higher-level summary schema node. 
This semantic summarization process continues until it reaches 

the root node. Consequently, the root node keeps the most 
abstract view of all the globally shared data objects. Traversal 
from root node to leaf nodes, the UCSM hierarchy provides a 
gradually refining method to find the image objects. 

This UCSM hierarchy is notable in its strong support to 
content-based image retrieval. The query can be submitted at 
any summary schema node as well as the local databases. The 
query is resolved as a series of matching query requirements 
with summary schemas. The query processor first compares 
the summary schema’s entry at the query origin node with the 
query goal. In case of a successful match, then the query 
processor returns the accessing terms as the result, if the query 
is originated at a leaf node, or query goal is sent to the proper 
child (children) node (s). Otherwise, the query goal moves up 
the summary schema’s hierarchy and tries to match the query 
at a higher level. This process continues until the query goal 
reaches leaf node (s) or the query goal reaches root without a 
successful match. Based on our experimental result [32], the 
height of the UCSM hierarchy is short, which by default 
implies efficient search process. 

In the UCSM, a user could issue either imprecise or precise 
queries.  Imprecise queries are those that may have access 
terms different from local access terms and/or may not specify 
any location of the data.  Precise queries, on the other hand, 
use exact local access terms and also give specific data 
location.  A precise query can be resolved by sending the 
query directly to the specified database whereas the process of 
resolving an imprecise query is more involved in identifying 
semantic intents of the user’s query and then, based on that 
intention, the query shall be resolved. 

The hierarchical structure of the UCSM is used to resolve 
imprecise queries.  The query resolution starts at the node 
issuing the query.  Each term ‘a’ in the query is compared with 
the terms in the schema ‘s’ at that node.  If the SDM between 
all query terms and schema terms is less than or equal to some 
specified threshold SDM, the query is resolved either at that 
node (if it is a local node) or at the children of that node (if it 
is an SSM node).  On the other hand, if ‘a’ and ‘s’ are not 
linguistically related; hence, not matched, the search proceeds 
to the parent of the current node.  This process will recursively 
continue until either the search reaches the top of the UCSM 
hierarchy and fails with no possible downward search, or the 
search fails at a particular node on a downward traversal, or 
the search reaches a local-node where the query is resolved.  
The search fails at a specific node when the query terms do not 
match the schema terms at that node. 

Given a random set of image objects in a heterogeneous 
multi-database environment, the UCSM prototype relies on its 
summarization capability to construct a hierarchical indexing 
structure for these objects. Hence, finding proper content 
integration methods is the crucial step to show the 
effectiveness of the UCSM. Two classes of content integration 
are employed in the UCSM framework: 

•  Replacing a set of specific terms with a more general 
term (hypernym relation), such as summarizing “car”, 



 
 

“bus”, and “truck” into a more abstract concept “auto”; 
and 

•  Reorganizing combinations of features to a more concise 
description, such as changing {[(object = dog) ∧  (color = 
grey)] t  [(object = dog) ∧  (color = white)]} into a 

shorter equivalent term {(object = dog) ∧  [(color = grey) 
∨  (color = white)]}. 

The first type of content integration is automated and relies 
on a system thesaurus [19, 32]. The second type, however, is 
an intriguing new issue that has not been explored. This 
content integration process, if resolved with properly designed 
strategies, would drastically reduce the cost of content-based 
retrieval in image databases. 

Our goal in the content integration process is to specify the 
hidden semantic relationships among the image objects using 
an effective analytical comparison of the features. Inspired by 
the formation of Karnaugh Maps, we designed a combinatorial 
optimization table to shorten the complex combinations of 
features into condensed logic terms. 

A UCSM-based indexing hierarchy is constructed during 
this content integration process. Compared with other indexing 
models, the UCSM hierarchy provides a more efficient content 
description by exploiting the unique summary representation 
of image objects. Our experimental results show that the 
UCSM has superior performance than some classic image 
indexing models, such as R*-tree and M-tree. 

5 THEORETICAL STUDY 
In this section, the performance of the proposed UCSM-

based searching scheme is analyzed. As it is expected an 
effective content-based retrieval mechanism requires the 
ability to capture the semantic contents of the data objects 
accurately and efficient data searching. We analyze the 
performance of the UCSM based on two performance metrics; 
the size of the summary schemas and the searching cost in the 
summary-schemas hierarchy. Some presumptions are given to 
simplify the analysis process and final conclusions. The 
rationality of performance analysis is further supported by our 
simulation results. 

5.1 The Analysis of Summary Schemas 
In section 4, the semantic contents of image objects were 

mapped to a multidimensional space of features, then 
expressed as the disjunction of some first-order logic terms, 
and finally converted to a concise representation with the help 
of a combinatory optimization table. We now justify the 
rationality of summary schemas by showing that the size of the 
summary schemas is drastically shortened after optimization.  

The size of summary schemas is measured by the number of 
predicates, which is comparable with the number of features in 
most of the other content-based indexing models. Reducing the 
number of predicates can reduce the number of comparisons in 
image object matching and consequently the communication 
cost during the query processing. 

We assume a image object (say, an image) I having K 
elementary entities E1, E2, …, Ek. Each elementary entity is 
within the multidimensional feature space indicated by f1, f2, 
…, fn, where fi = pi1 ∨  pi2 ∨ … ∨  pim is the disjunction of some 
logic predicates. As mentioned in section 2, the semantic 
content of the image object I can be represented as the union 
of the elementary entities, which are expressed as the 
conjunctions of predicates. Refer to Definitions 5 and 6, we 
have the following expression of semantic content: 

S    =  r
k

i 1=

 Ei  =   r
k
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Since the semantic content of feature fi is uniquely 

determined by the true predicate pix within pi1, pi2,… , pim, we 
change the above equation into a simpler form: 

S    =    r
k

i 1=
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=

n

j 1
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( i )
 ) 

where pj 
( i ) is the true predicate of the jth feature of the ith 

elementary entity. 
Let S* be the final result from the combinatory optimization 

table. Given the definition of combinatory optimization table, 
S* by default expresses the same semantic content as S. 
According to step 4 of the optimization method, S* is the union 
of a collection of clusters C1, C2, …, Cq, with each cluster 
indicating several elementary entities. Hence, S* can be 
expressed as the following: 

S*  = t
q

i 1=

Ci.  

As mentioned earlier, each cluster corresponds to a 
rectangular region in the combinatory optimization table. 
Assume cluster Ci is horizontally indicated by labels L1’, 
L2’,…, Lr’, and vertically indicated by labels L1”, L2”,…, Ls”. 
Here any label in L1’, L2’,…, Lr’ or L1”, L2”,…, Ls” can be the 
conjunction of several predicates in equation (2). For instance, 
L1’ may be (object = cat) ∧  (color = grey). Then Ci can be 
expressed as (L1’ ∨  L2’ ∨ …∨  Lr’) ∧  (L1” ∨  L2” ∨ …∨  Ls”), or 

∨
=

r

i 1
[ ∨

=

s

j 1
 (Li’ ∧  Lj” )]. 

When representing the clusters with labels, if a cluster is a 
whole row/column, then the label for the row/column can be 
omitted in the representation. For instance, if all texture 
patterns are in a cluster, then this cluster does not need the 
feature “texture” in its representation. For the clusters that do 
not contain whole rows/columns, avoiding overlapping with 
other clusters can reduce the size of summary schemas. 

5.2 The Search Cost 
Some content-based indexing models evaluated searching 

cost in terms of the number of comparisons [18], while others 
use the number of disk accesses as the searching cost [14, 16]. 
We believe that both parameters should be accounted when 
determining the searching cost. In this section, the searching 
cost of the summary-schemas hierarchy is calculated as the 
average number of accesses at the summary-schemas nodes 



 
 

(number of comparisons) and local nodes (number of disk 
accesses). 

We assume a set of n image objects, I1, I2, …, In and the 
following notations in our analysis: 

•  P (Ii): The probability of being queried for image object 
Ii.  

•  W : The average searching cost for all image objects in 
any indexing tree model. 

•  W (Ii): The searching cost for image object Ii in any 
indexing tree model. 

•  N (Ii): The number of nodes on the path from root node 
to image object Ii in any indexing tree model. 

•  W *: The average searching cost for all image objects in 
summary schemas model. 

•  W* (Ii): The searching cost for image object Ii in summary 
schemas model. 

•  N* (Ii): The number of nodes on the path from root node 
to image object Ii in summary schemas model. 

Given the above notations, the searching cost for a request 
composed on n random objects is: 

W  = ∑
=

n

i 1
[P (Ii) W (Ii)]            (1) 

Considering the definitions of the indexing models [11-18], 
the content-based searching always starts from the root node, 
traverses within the indexing tree, and finally arrives at the 
image object Ii. Thus, 

W (Ii) > N (Ii)                (2) 

W  = ∑
=

n

i 1
[ P (Ii) W (Ii)] > ∑

=

n

i 1
[ P (Ii) N (Ii)]   (3) 

Lemma 1: The UCSM hierarchy does not contain any form 
of overlapping between its branches. 

The elimination of overlapping between branches of the 
UCSM hierarchy is due to the existence of synonym links. 
While the other indexing models (R-tree family, SS-tree, etc.) 
are striving for the reduction of overlapping, the UCSM 
hierarchy can completely remove the overlapping data by 
adding some synonym links to other branches. 
Proposition 1: Given a fixed set of image objects, the 
UCSM hierarchy has less or equal height than any indexing 
tree. 
Proof. We will prove that any indexing tree can be described 
using the UCSM hierarchy with less or equal height. Given 
any arbitrary set of image objects I = {I1, I2, …, In} and any 
indexing tree model M, we can construct an equivalent UCSM 
hierarchy in the following way: 

Let T be the indexing tree generated from applying indexing 
model M to the image data set I. And for any node ni in tree T, 
let feature (ni) be the set of features that globally identify node 
ni, parent (ni) denote the parent node of ni, and children (ni) 
be the set of child (children) node(s) of ni.  

First, we group the leaf nodes into clusters C1, C2, …, Ck 
according to common parents. For any cluster Cj, make a 
union of all features of the nodes in this cluster to get the 
features for the common parent node. That is to say, suppose 

n* is the common parent node of cluster Cj, feature (n*) = 

t
Cjni∈

feature (ni). The rationale behind this union is the fact 

that any node in the tree-based indexing structure can be 
identified by the route from the root to that node, which can 
also be determined by the features available at that node. 

Next, we can use the aforementioned summarization process 
to generate a proper summary schema for the parent node n*. 
By recursively making abstraction, we construct a UCSM 
hierarchy with no more height than the indexing tree T. 
According to Lemma 1, this UCSM hierarchy does not contain 
any overlapping, which may further reduce the height of the 
UCSM hierarchy. Hence, the UCSM hierarchy can describe 
any feature-based indexing tree with less or equal height. Or in 
another word, for any image object Ii, we have N* (Ii) < N (Ii). 

As mentioned earlier in sections 3 and 4, the query can be 
submitted at any arbitrary summary-schemas node. In 
particular, when a K-nearest-neighbor query is submitted to 
the summary-schemas model, the searching is restricted within 
a small region rather than the whole indexing hierarchy. 
Assume the nearest neighbors are ordered by their similarities 
as I’1, I’2, …, I’K, the searching of I’2 will be restricted within 
an area near the place of I’1, which makes W* (I’2) < N* (I’2). 
Hence, 

W * = ∑
=

n

i 1
[P (Ii) W* (I’i)] < ∑

=

n

i 1
[P (Ii) N* (I’i)]   (4) 

Considering equation (3) and Proposition 1, we obtain 

W * < ∑
=

n

i 1
[P (Ii) N* (I’i)] < ∑

=

n

i 1
[P (Ii) N (I’i)] < W  (5) 

Hence, the UCSM achieves the optimal performance in 
terms of searching cost. 

6 FURTHER DISCUSSIONS 
In addition to the performance consideration, another 

important factor – imprecise query processing – favors the 
choice of summary-schemas model as the underlying platform 
for content-based indexing. Most of the previous researches 
[11-18] in content-based retrieval focus on searching cost and 
similarity comparisons, and do not consider the imprecise 
query processing. As mentioned earlier, the summary-schemas 
hierarchy contains two types of summary schemas: the lower-
level summary schemas generated by optimization of features, 
and the higher-level summary schemas constructed from 
content abstraction of lower-level summary schemas. The 
higher-level summary schemas may reveal some semantic 
content beyond the features extracted from the underlying data 
objects. For example, an image containing “flowers” and 
“smiling faces” may express the concept of “happiness”. For 
simplicity, we denote the lower-level summary schemas as 
“quantitative summaries”, and denote the higher-level 
summary schemas as “descriptive summaries”. 

Section 4 presented an optimization algorithm for 
generating quantitative summaries. However, these 
quantitative summaries may not be able to reveal the 
implication of image objects. For instances, gestures, facial 



 
 

expressions, and background settings may have some 
implications that can only be extracted with human senses. 
Fortunately, these implications can be integrated within the 
higher-level summary schemas (descriptive summaries). 

The descriptive summaries obtain the implications with the 
help of some common-sense rules, which indicate the semantic 
relationships between visual components and their symbolic 
meanings. For instance, “sun + flowers + smile” means 
“happiness”, and “white doves + olive” symbolizes “peace”. 
Some complex image objects may generate multi-level 
descriptive summaries. 

With descriptive summaries, an imprecise query can be 
processed as follows: First, find a summary schema that 
matches with the query; then decompose the imprecise query 
into simpler descriptive summaries (or quantitative summaries) 
as sub queries; and finally combine the results from the 
decomposed sub queries. The capability of processing 
imprecise queries drastically enhances the searching power of 
the UCSM-based search engine, and makes the UCSM 
distinguished from other content-based indexing models. 

7 CONCLUSIONS 
We proposed a novel content-aware retrieval model for 

image data objects in heterogeneous distributed database 
environment. In contrast with the traditional feature-based 
indexing models, the proposed model employs a concise 
descriptive term – ubiquitous content summary – to represent 
the semantic contents of image objects. In short, the proposed 
model offers the following advantages: (1) the concise 
summary accurately represents the semantic contents of image 
objects using optimized logic terms; (2) the descriptive 
summary enables the search engine with capability of handling 
imprecise queries; and (3) the performance of content-based 
indexing within the UCSM hierarchy is optimal in terms of 
searching cost. Our future work would include improvements 
of the UCSM prototype, such as more efficient summarization 
strategies and adaptation to wireless network environments.  
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